为研究基础结构的材料属性和尺寸对单桩式海上风机基础可靠性的影响,提出基于PC-Kriging模型(Polynomial-Chaos-based Kriging,PC-Kriging)和蒙特卡洛模拟(Monte Carlo Simulation,MCS)方法,结合IEGO学习函数建立的单桩式海上风机基础...为研究基础结构的材料属性和尺寸对单桩式海上风机基础可靠性的影响,提出基于PC-Kriging模型(Polynomial-Chaos-based Kriging,PC-Kriging)和蒙特卡洛模拟(Monte Carlo Simulation,MCS)方法,结合IEGO学习函数建立的单桩式海上风机基础可靠性分析模型,并通过算例验证了该方法的精确性。以50年重现期的海况为极端环境,考虑材料密度、弹性模量和桩腿壁厚的不确定性,进行单桩式海上风机基础在塔筒顶部位移和应力控制两个失效因素下的可靠性分析,并进行全局灵敏度分析。分析结果表明,单桩式海上风机基础失效概率为8.4×10-3,材料密度对可靠性影响可以忽略不计,而材料弹性模量和桩腿壁厚对可靠性影响较大。展开更多
为了探讨风-波浪-地震共同作用下单桩式海上风机(OWTs)的动力行为,以National Renewable Energy Laboratory(NREL)5 MW风力发电机为研究对象,将风、地震作为独立事件,根据风-波浪统计关系确定波浪谱参数.改进FAST软件以模拟土-结相互作...为了探讨风-波浪-地震共同作用下单桩式海上风机(OWTs)的动力行为,以National Renewable Energy Laboratory(NREL)5 MW风力发电机为研究对象,将风、地震作为独立事件,根据风-波浪统计关系确定波浪谱参数.改进FAST软件以模拟土-结相互作用,考虑停机、运行和应急停机3种工况,采用气动-伺服-水动-弹性耦合方法分析海上风机地震响应.算例表明,工作状态显著影响海上风机支撑结构的运动和内力,规律与地震强弱有关;地震动显著影响叶片挥舞振动速度;在风-波浪-地震的共同作用下,海上风机支撑结构危险截面剪力和弯矩峰值超过极端风-波浪作用效应.展开更多
The seismic safety of offshore wind turbines is an important issue that needs to be solved urgently.Based on a unified computing framework,this paper develops a set of seawater-seabed-wind turbine zoning coupling anal...The seismic safety of offshore wind turbines is an important issue that needs to be solved urgently.Based on a unified computing framework,this paper develops a set of seawater-seabed-wind turbine zoning coupling analysis methods.A 5 MW wind turbine and a site analysis model are established,and a seismic wave is selected to analyze the changes in the seismic response of offshore monopile wind turbines under the change of seawater depth,seabed wave velocity and seismic wave incidence angle.The analysis results show that when the seawater increases to a certain depth,the seismic response of the wind turbine increases.The shear wave velocity of the seabed affects the bending moment and displacement at the bottom of the tower.When the angle of incidence increases,the vertical displacement and the acceleration of the top of the tower increase in varying degrees.展开更多
冰载荷是海上风机在寒区安全运行的重要影响因素之一,由其引发的冰激振动给风机结构带来了严重的危害.本文通过离散元(discrete element method, DEM)--有限元(finite element method, FEM)耦合方法建立了寒区单桩式风机结构的冰激振动...冰载荷是海上风机在寒区安全运行的重要影响因素之一,由其引发的冰激振动给风机结构带来了严重的危害.本文通过离散元(discrete element method, DEM)--有限元(finite element method, FEM)耦合方法建立了寒区单桩式风机结构的冰激振动模型.采用具有粘结-破碎性能的球体离散单元描述平整海冰损伤破坏行为,采用梁单元和三角形平板壳单元构造带有抗冰锥体的单桩式风机有限元模型.采用DEM-FEM耦合方法模拟不同冰速、冰厚条件下单桩式风机与平整冰相互作用过程,并且与IEC规范和ISO标准经验公式对比验证该耦合模型计算冰载荷的准确性.对比风机塔筒顶端和基础顶端的位移和加速度响应时程,定性地给出风机结构不同部位振动响应行为差异性.风机不同部位动力特性差异原因为风机结构独特结构特点:下部为大刚度桩基和上部为高柔度塔筒,使其动力特征表现为主从式结构特性."主-从式结构"特征使得结构在复杂的冰载荷作用下,风机塔筒(子结构)和桩基(主结构)表现为不同的响应行为,风机不同部位振动周期和加速度谱两者出现差异.本文研究成果为海上风机抗冰设计和疲劳分析提供了有益参考.展开更多
Increasing size of wind turbine and deep water deployment have raised the issue of appropriate selection of the most suitable support structure to make offshore wind energy cost competitive.The paper presents an optim...Increasing size of wind turbine and deep water deployment have raised the issue of appropriate selection of the most suitable support structure to make offshore wind energy cost competitive.The paper presents an optimization methodology for decision making process of bottom mounted supports of offshore wind turbines (OWTs) through reasonable engineering attributes derivation.Mathematic models of support structures are reduced by the generalized single-degree-of-freedom theory with relatively fewer structural parameters.Soft-stiff design optimization based on dynamic properties of OWTs is performed for monopile and lattice supports with different wind turbines,water depth and hub height.Attributes of support structures,wind turbines and environment conditions are applied in the multi-criteria decision making method——TOPSIS for benchmarking of those options.The results illustrate the effectiveness of the proposed optimazation methodology combined with economical and environmental attributes together.展开更多
文摘为研究基础结构的材料属性和尺寸对单桩式海上风机基础可靠性的影响,提出基于PC-Kriging模型(Polynomial-Chaos-based Kriging,PC-Kriging)和蒙特卡洛模拟(Monte Carlo Simulation,MCS)方法,结合IEGO学习函数建立的单桩式海上风机基础可靠性分析模型,并通过算例验证了该方法的精确性。以50年重现期的海况为极端环境,考虑材料密度、弹性模量和桩腿壁厚的不确定性,进行单桩式海上风机基础在塔筒顶部位移和应力控制两个失效因素下的可靠性分析,并进行全局灵敏度分析。分析结果表明,单桩式海上风机基础失效概率为8.4×10-3,材料密度对可靠性影响可以忽略不计,而材料弹性模量和桩腿壁厚对可靠性影响较大。
文摘为了探讨风-波浪-地震共同作用下单桩式海上风机(OWTs)的动力行为,以National Renewable Energy Laboratory(NREL)5 MW风力发电机为研究对象,将风、地震作为独立事件,根据风-波浪统计关系确定波浪谱参数.改进FAST软件以模拟土-结相互作用,考虑停机、运行和应急停机3种工况,采用气动-伺服-水动-弹性耦合方法分析海上风机地震响应.算例表明,工作状态显著影响海上风机支撑结构的运动和内力,规律与地震强弱有关;地震动显著影响叶片挥舞振动速度;在风-波浪-地震的共同作用下,海上风机支撑结构危险截面剪力和弯矩峰值超过极端风-波浪作用效应.
基金supported in part by the National Natural Science Foundation of China(Nos.51978337,U2039209).
文摘The seismic safety of offshore wind turbines is an important issue that needs to be solved urgently.Based on a unified computing framework,this paper develops a set of seawater-seabed-wind turbine zoning coupling analysis methods.A 5 MW wind turbine and a site analysis model are established,and a seismic wave is selected to analyze the changes in the seismic response of offshore monopile wind turbines under the change of seawater depth,seabed wave velocity and seismic wave incidence angle.The analysis results show that when the seawater increases to a certain depth,the seismic response of the wind turbine increases.The shear wave velocity of the seabed affects the bending moment and displacement at the bottom of the tower.When the angle of incidence increases,the vertical displacement and the acceleration of the top of the tower increase in varying degrees.
文摘冰载荷是海上风机在寒区安全运行的重要影响因素之一,由其引发的冰激振动给风机结构带来了严重的危害.本文通过离散元(discrete element method, DEM)--有限元(finite element method, FEM)耦合方法建立了寒区单桩式风机结构的冰激振动模型.采用具有粘结-破碎性能的球体离散单元描述平整海冰损伤破坏行为,采用梁单元和三角形平板壳单元构造带有抗冰锥体的单桩式风机有限元模型.采用DEM-FEM耦合方法模拟不同冰速、冰厚条件下单桩式风机与平整冰相互作用过程,并且与IEC规范和ISO标准经验公式对比验证该耦合模型计算冰载荷的准确性.对比风机塔筒顶端和基础顶端的位移和加速度响应时程,定性地给出风机结构不同部位振动响应行为差异性.风机不同部位动力特性差异原因为风机结构独特结构特点:下部为大刚度桩基和上部为高柔度塔筒,使其动力特征表现为主从式结构特性."主-从式结构"特征使得结构在复杂的冰载荷作用下,风机塔筒(子结构)和桩基(主结构)表现为不同的响应行为,风机不同部位振动周期和加速度谱两者出现差异.本文研究成果为海上风机抗冰设计和疲劳分析提供了有益参考.
基金Supported by the National Natural Science Foundation of China (No.51309209,51279186) and the National Basic Research Program of China (No.2011CB013704).
文摘Increasing size of wind turbine and deep water deployment have raised the issue of appropriate selection of the most suitable support structure to make offshore wind energy cost competitive.The paper presents an optimization methodology for decision making process of bottom mounted supports of offshore wind turbines (OWTs) through reasonable engineering attributes derivation.Mathematic models of support structures are reduced by the generalized single-degree-of-freedom theory with relatively fewer structural parameters.Soft-stiff design optimization based on dynamic properties of OWTs is performed for monopile and lattice supports with different wind turbines,water depth and hub height.Attributes of support structures,wind turbines and environment conditions are applied in the multi-criteria decision making method——TOPSIS for benchmarking of those options.The results illustrate the effectiveness of the proposed optimazation methodology combined with economical and environmental attributes together.