To achieve high optical power as well as low vertical divergence angle,a new kind of optim ized large opti- cal cavity (L OC) structure is applied to a ridge waveguide 980 nm In Ga As/ Ga As/ Al Ga As m ulti- quantum...To achieve high optical power as well as low vertical divergence angle,a new kind of optim ized large opti- cal cavity (L OC) structure is applied to a ridge waveguide 980 nm In Ga As/ Ga As/ Al Ga As m ulti- quantum well laser.The optical power density in the waveguide is successfully reduced.The maxim um output power is more than 40 0 m W with a slope efficiency of 0 .89W/ A and the far- field vertical divergence angle is lowered to 2 3°.展开更多
Rotational isomerism effects on the optical spectra of a push-pull nonlinear optical chro-mophore 2-dicyanomethylen-3-cyano-4-f2-[E-(4-N,N-di(2-acetoxyethyl)-amino)-phenylene-(3,4-dibutyl)-thien-5]-E-vinylg-5,5-...Rotational isomerism effects on the optical spectra of a push-pull nonlinear optical chro-mophore 2-dicyanomethylen-3-cyano-4-f2-[E-(4-N,N-di(2-acetoxyethyl)-amino)-phenylene-(3,4-dibutyl)-thien-5]-E-vinylg-5,5-dimethyl-2,5-dihydrofuran (FTC) in a few solvents have been studied using the time-dependent density functional theory in combination with the polarizable continuum model. It is shown that the maximum absorption peaks of the ro-tamers have difference of nearly 30 nm both in vacuum and in solutions. The population of the rotamers changes a lot in different solvents. Based on the geometries optimized by Hartree-Fock method, the Maxwell-Boltzmann averaged absorption has been calculated and the maximum absorption peak is in good agreement with experiment. It indicates that the bond length alternation can have an important effect on the optical spectra.展开更多
By employing the dielectric continuum model and Loudon's uniaxial crystal model, the interface optical (IO) phonon modes in a freestanding quasi-one-dimensional (Q1D) wurtzite rectangular quantum wire are derived...By employing the dielectric continuum model and Loudon's uniaxial crystal model, the interface optical (IO) phonon modes in a freestanding quasi-one-dimensional (Q1D) wurtzite rectangular quantum wire are derived and analyzed. Numerical calculation on a freestanding wurtzite GaN quantum wire is performed. The resulte reveal that the dispersion frequencies of IO modes sensitively depend on the geometric structures of the Q1D wurtzite rectangular quantum wires, the free wave-number kz in z-direction and the dielectric constant of the nonpolar matrix. The degenerating behavior of the IO modes in Q1D wurtzite rectangular quantum wire has been clearly observed in the case of small wave-number kz and Iarge ratio of length to width of the rectangular crossing profile. The limited frequency behaviors of IO modes have been analyzed deeply, and detailed comparisons with those in wurtzite planar quantum wells and cylindrical quantum wires are also done. The present theories can be looked on as a generalization of that in isotropic rectangular quantum wires, and it can naturally reduce to the case of Q1D isotropic quantum wires once the anisotropy of the wurtzite material is ignored.展开更多
A scheme is proposed to generate W state of N atoms trapped in a cavity,based on adiabatic passage alongdark state.Taking advantage of adiabatic passage,the atoms have no probability of being excited and thus the atom...A scheme is proposed to generate W state of N atoms trapped in a cavity,based on adiabatic passage alongdark state.Taking advantage of adiabatic passage,the atoms have no probability of being excited and thus the atomicspontaneous emission is suppressed.The scheme is simple.It does not need to adjust the interaction time accurately,anddoes not need to prepare the cavity field in one-photon state.Numerical simulation shows that the successful probabilityof the scheme increases with the increasing of the atom number.展开更多
Using multipohton Tavis-Cummings model,the entanglement evolution of two coupling two-level atoms in Bell states interacting with a single-mode vacuum field is investigated by using negativity.The influences of coupli...Using multipohton Tavis-Cummings model,the entanglement evolution of two coupling two-level atoms in Bell states interacting with a single-mode vacuum field is investigated by using negativity.The influences of coupling constants between atoms,the atomic initial states and the photon number of transition on the entanglement evolution of two coupling two-level atoms are discussed.The results obtained using the numerical method show that the entanglement of two atoms is related with coupling constants between atoms,the atomic initial states and the photon number of transition.The two-atom entanglement state will forever stay in the maximum entanglement state when the initial state is β11〉.When the initial state of two atoms is β01〉,the entanglement of two atoms displays periodic oscillation behavior.And its oscillation period decreases with increasing of coupling constant between atoms or the photon number of transition.On the other hand,when the initial state is β00〉 or β10〉,the entanglement of two atoms displays quasiperiodic oscillation behavior and its oscillation period decreases with increasing of coupling constant between atoms or the photon number of transition.展开更多
The effective index of the cladding fundamental space-filling mode in photonic crystal fiber (PCF) is simulated by the effective index method. The variation of the effective index with the structure parameters of the ...The effective index of the cladding fundamental space-filling mode in photonic crystal fiber (PCF) is simulated by the effective index method. The variation of the effective index with the structure parameters of the fiber is achieved. For the first time, the relations of the V parameter of Yb3+-doped PCF with the refractive index of core and the structure parameters of the fiber are provided. the single-mode characteristics of large-core Yb3+-doped photonic crystal fibers with 7 and 19 missing air holes in the core are analyzed. The large-core single-mode Yb3+-doped photonic crystal fibers with core diameters of 50 μm, 100 μm and 150 μm are designed. The results provide theory instruction for the design and fabrication of fiber.展开更多
文摘根据平面波展开法(PWEM)给出泵浦光和信号光本征模场分布,结合速率方程和功率传输方程设计一种大单模尺寸的实芯掺铒K9玻璃大模式面积单模光子晶体光纤,芯径为20μm;分析其椭圆度容差为94.7%,最内层小孔最大允许偏移量为0.1μm;分析了掺铒K9玻璃光子晶体光纤放大器的放大特性.进行数值计算后得到当铒离子浓度(N_4)为1×10^(26)时,掺铒K9玻璃光纤放大器阈值为180 mW,最佳长度为0.26 m.
文摘To achieve high optical power as well as low vertical divergence angle,a new kind of optim ized large opti- cal cavity (L OC) structure is applied to a ridge waveguide 980 nm In Ga As/ Ga As/ Al Ga As m ulti- quantum well laser.The optical power density in the waveguide is successfully reduced.The maxim um output power is more than 40 0 m W with a slope efficiency of 0 .89W/ A and the far- field vertical divergence angle is lowered to 2 3°.
基金ACKNOWLEDGMENTS This work was supported by Young Scientists Fund of the National Natural Science Foundation of China (No.10904085).
文摘Rotational isomerism effects on the optical spectra of a push-pull nonlinear optical chro-mophore 2-dicyanomethylen-3-cyano-4-f2-[E-(4-N,N-di(2-acetoxyethyl)-amino)-phenylene-(3,4-dibutyl)-thien-5]-E-vinylg-5,5-dimethyl-2,5-dihydrofuran (FTC) in a few solvents have been studied using the time-dependent density functional theory in combination with the polarizable continuum model. It is shown that the maximum absorption peaks of the ro-tamers have difference of nearly 30 nm both in vacuum and in solutions. The population of the rotamers changes a lot in different solvents. Based on the geometries optimized by Hartree-Fock method, the Maxwell-Boltzmann averaged absorption has been calculated and the maximum absorption peak is in good agreement with experiment. It indicates that the bond length alternation can have an important effect on the optical spectra.
基金The project supported by the Science and Technology Project of Advanced Academy of Guangzhou City under Grant No. 2060. The author acknowledges the detailed and valuable discussions with Prof. J.J. Shi.
文摘By employing the dielectric continuum model and Loudon's uniaxial crystal model, the interface optical (IO) phonon modes in a freestanding quasi-one-dimensional (Q1D) wurtzite rectangular quantum wire are derived and analyzed. Numerical calculation on a freestanding wurtzite GaN quantum wire is performed. The resulte reveal that the dispersion frequencies of IO modes sensitively depend on the geometric structures of the Q1D wurtzite rectangular quantum wires, the free wave-number kz in z-direction and the dielectric constant of the nonpolar matrix. The degenerating behavior of the IO modes in Q1D wurtzite rectangular quantum wire has been clearly observed in the case of small wave-number kz and Iarge ratio of length to width of the rectangular crossing profile. The limited frequency behaviors of IO modes have been analyzed deeply, and detailed comparisons with those in wurtzite planar quantum wells and cylindrical quantum wires are also done. The present theories can be looked on as a generalization of that in isotropic rectangular quantum wires, and it can naturally reduce to the case of Q1D isotropic quantum wires once the anisotropy of the wurtzite material is ignored.
基金Supported by the Science Foundation of Educational Committee of Fujian Province under Grant No.JB09011
文摘A scheme is proposed to generate W state of N atoms trapped in a cavity,based on adiabatic passage alongdark state.Taking advantage of adiabatic passage,the atoms have no probability of being excited and thus the atomicspontaneous emission is suppressed.The scheme is simple.It does not need to adjust the interaction time accurately,anddoes not need to prepare the cavity field in one-photon state.Numerical simulation shows that the successful probabilityof the scheme increases with the increasing of the atom number.
基金Supported by the Natural Science Foundation of Fujian Province under Grant (No.2008J0217)
文摘Using multipohton Tavis-Cummings model,the entanglement evolution of two coupling two-level atoms in Bell states interacting with a single-mode vacuum field is investigated by using negativity.The influences of coupling constants between atoms,the atomic initial states and the photon number of transition on the entanglement evolution of two coupling two-level atoms are discussed.The results obtained using the numerical method show that the entanglement of two atoms is related with coupling constants between atoms,the atomic initial states and the photon number of transition.The two-atom entanglement state will forever stay in the maximum entanglement state when the initial state is β11〉.When the initial state of two atoms is β01〉,the entanglement of two atoms displays periodic oscillation behavior.And its oscillation period decreases with increasing of coupling constant between atoms or the photon number of transition.On the other hand,when the initial state is β00〉 or β10〉,the entanglement of two atoms displays quasiperiodic oscillation behavior and its oscillation period decreases with increasing of coupling constant between atoms or the photon number of transition.
基金supported by the National Natural Science Foundation of China (Nos.60637010 and 60978028)the National Basic Research Program of China (No.2010CB327604)+1 种基金the Young Scientists Fund of the Natural Science Foundation of Hebei Province (Nos.F2010001313 andF2010001291)the Science and Technology Development Program of Qinhuangdao of Hebei Province (No.201001A076)
文摘The effective index of the cladding fundamental space-filling mode in photonic crystal fiber (PCF) is simulated by the effective index method. The variation of the effective index with the structure parameters of the fiber is achieved. For the first time, the relations of the V parameter of Yb3+-doped PCF with the refractive index of core and the structure parameters of the fiber are provided. the single-mode characteristics of large-core Yb3+-doped photonic crystal fibers with 7 and 19 missing air holes in the core are analyzed. The large-core single-mode Yb3+-doped photonic crystal fibers with core diameters of 50 μm, 100 μm and 150 μm are designed. The results provide theory instruction for the design and fabrication of fiber.