A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of l...A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of less number of visible satellites. The system time difference between GPS and GLONASS (STDGG) and zenith tropospheric delay (ZTD) values were firstly estimated in an open sky condition using the traditional GG-PPP algorithm. Then, they were used as a priori known values in the modified algorithm instead of estimating them as unknowns. The proposed algorithm was tested using observations collected at BJFS station in a simulated open-pit mine environment. The results show that the position filter converges much faster to a stable value in all three coordinate components using the modified algorithm than using the traditional algorithm. The modified algorithm achieves higher positioning accuracy as well. The accuracy improvement in the horizontal direction and vertical direction reaches 69% and 95% at a satellite elevation mask angle of 50°, respectively.展开更多
The mining area deformation monitoring theory and method using precise point positioning (PPP) ambi- guity resolution (AR) were studied, and an ambiguity fixing model with satellite and receiver combina- tion phas...The mining area deformation monitoring theory and method using precise point positioning (PPP) ambi- guity resolution (AR) were studied, and an ambiguity fixing model with satellite and receiver combina- tion phase delay (CPD) was proposed for zero-differenced PPP ambiguity fixing and its corresponding formula derivation was given. The data processing results for I h at six IGS stations in China show that 93% of ambiguities can be fixed within 10 min and all ambiguities can be fixed within 15 min. After ambi- guity fixing, the positioning accuracy is improved by more than 85% in the E and N directions, with abso- lute positioning accuracy reaching millimeter level, and it was improved by 70% in the U direction, reaching centimeter level; the proposed zero-differenced ambiguity fixing model can effectively improve the convergence rate and positioning accuracy in PPP. Data monitoring continuously conducted for half a year at four COPS stations of Shanxi China Coal Pingshuo Group validated the feasibility of using PPP in mining area deformation monitoring.展开更多
Chinese Beidou satellite navigation system constellation currently consists of eight Beidou satellites and can provide preliminary service of navigation and positioning in the Asia-Pacific Region.Based on the self-dev...Chinese Beidou satellite navigation system constellation currently consists of eight Beidou satellites and can provide preliminary service of navigation and positioning in the Asia-Pacific Region.Based on the self-developed software Position And Navigation Data Analysis(PANDA) and Beidou Experimental Tracking Stations (BETS),which are built by Wuhan University,the study of Beidou precise orbit determination,static precise point positioning (PPP),and high precision relative positioning,and differential positioning are carried out comprehensively.Results show that the radial precision of the Beidou satellite orbit determination is better than 10 centimeters.The RMS of static PPP can reach several centimeters to even millimeters for baseline relative positioning.The precision of kinematic pseudo-range differential positioning and RTK mode positioning are 2-4 m and 5-10 cm respectively,which are close to the level of GPS precise positioning.Research in this paper verifies that,with support of ground reference station network,Beidou satellite navigation system can provide precise positioning from several decimeters to meters in the wide area and several centimeters in the regional area.These promising results would be helpful for the implementation and applications of Beidou satellite navigation system.展开更多
基金Project(41004011)supported by the National Natural Science Foundation of ChinaProject(2014M550425)supported by the China Postdoctoral Science Foundation
文摘A modified algorithm of combined GPS/GLONASS precise point positioning (GG-PPP) was developed by decreasing the number of unknowns to be estimated so that accurate position solutions can be achieved in the case of less number of visible satellites. The system time difference between GPS and GLONASS (STDGG) and zenith tropospheric delay (ZTD) values were firstly estimated in an open sky condition using the traditional GG-PPP algorithm. Then, they were used as a priori known values in the modified algorithm instead of estimating them as unknowns. The proposed algorithm was tested using observations collected at BJFS station in a simulated open-pit mine environment. The results show that the position filter converges much faster to a stable value in all three coordinate components using the modified algorithm than using the traditional algorithm. The modified algorithm achieves higher positioning accuracy as well. The accuracy improvement in the horizontal direction and vertical direction reaches 69% and 95% at a satellite elevation mask angle of 50°, respectively.
基金Financial support from the National Natural Science Foundation of China (No. 41074010)the Jiangsu Innovation Works Fund of Postgraduate (No. CXZZ11-0299)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘The mining area deformation monitoring theory and method using precise point positioning (PPP) ambi- guity resolution (AR) were studied, and an ambiguity fixing model with satellite and receiver combina- tion phase delay (CPD) was proposed for zero-differenced PPP ambiguity fixing and its corresponding formula derivation was given. The data processing results for I h at six IGS stations in China show that 93% of ambiguities can be fixed within 10 min and all ambiguities can be fixed within 15 min. After ambi- guity fixing, the positioning accuracy is improved by more than 85% in the E and N directions, with abso- lute positioning accuracy reaching millimeter level, and it was improved by 70% in the U direction, reaching centimeter level; the proposed zero-differenced ambiguity fixing model can effectively improve the convergence rate and positioning accuracy in PPP. Data monitoring continuously conducted for half a year at four COPS stations of Shanxi China Coal Pingshuo Group validated the feasibility of using PPP in mining area deformation monitoring.
文摘Chinese Beidou satellite navigation system constellation currently consists of eight Beidou satellites and can provide preliminary service of navigation and positioning in the Asia-Pacific Region.Based on the self-developed software Position And Navigation Data Analysis(PANDA) and Beidou Experimental Tracking Stations (BETS),which are built by Wuhan University,the study of Beidou precise orbit determination,static precise point positioning (PPP),and high precision relative positioning,and differential positioning are carried out comprehensively.Results show that the radial precision of the Beidou satellite orbit determination is better than 10 centimeters.The RMS of static PPP can reach several centimeters to even millimeters for baseline relative positioning.The precision of kinematic pseudo-range differential positioning and RTK mode positioning are 2-4 m and 5-10 cm respectively,which are close to the level of GPS precise positioning.Research in this paper verifies that,with support of ground reference station network,Beidou satellite navigation system can provide precise positioning from several decimeters to meters in the wide area and several centimeters in the regional area.These promising results would be helpful for the implementation and applications of Beidou satellite navigation system.