By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,...By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,1)with 0〈ξ1〈ξ2……〈ξm-2〈1,αi ∈ R^+,f ∈C[(0,1)×R^+,R^+],f(x,φ) may be singular at x=0 and x=1,g(x):(0,1)→R is Lebesgue measurable, g may tend to negative infinity and have finitely many singularities.展开更多
We establish a new type of the classical boundary Schwarz lemma for holomorphic self-mappings of the unit polydisk Dnin Cn. By using the Carath′eodory metric and Kobayashi metric of Dn, we obtain some properties of t...We establish a new type of the classical boundary Schwarz lemma for holomorphic self-mappings of the unit polydisk Dnin Cn. By using the Carath′eodory metric and Kobayashi metric of Dn, we obtain some properties of the complex Jacobian matrix Jf(p) at a boundary point p of Dnfor a holomorphic self-mapping f of Dn. Our results extend the classical Schwarz lemma at the boundary to high dimensions.展开更多
基金Foundation item: Supported by the National Natural Science Foundation of China(10671167) Supported by the Research Foundation of Liaocheng University(31805)
文摘By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,1)with 0〈ξ1〈ξ2……〈ξm-2〈1,αi ∈ R^+,f ∈C[(0,1)×R^+,R^+],f(x,φ) may be singular at x=0 and x=1,g(x):(0,1)→R is Lebesgue measurable, g may tend to negative infinity and have finitely many singularities.
基金supported by National Natural Science Foundation of China(Grant Nos.11101139,11271124 and 11301136)Natural Science Foundation of Zhejiang Province(Grant No.LY14A010017)Natural Science Foundation of Hebei Province(Grant No.A2014205069)
文摘We establish a new type of the classical boundary Schwarz lemma for holomorphic self-mappings of the unit polydisk Dnin Cn. By using the Carath′eodory metric and Kobayashi metric of Dn, we obtain some properties of the complex Jacobian matrix Jf(p) at a boundary point p of Dnfor a holomorphic self-mapping f of Dn. Our results extend the classical Schwarz lemma at the boundary to high dimensions.