期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于改进OCSVM的智能变电站数据流异常检测方法研究
被引量:
10
1
作者
闫梦秋
杨轶俊
赵舫
《电力系统保护与控制》
EI
CSCD
北大核心
2022年第6期100-106,共7页
目前智能变电站的数据流异常检测对准确性和实时性要求较高,采用简单阈值的检测方法已无法满足要求。针对这一问题,基于智能变电站体系架构,提出了一种将改进的密度聚类算法和改进的单类支持向量机算法相结合用于智能变电站异常数据流...
目前智能变电站的数据流异常检测对准确性和实时性要求较高,采用简单阈值的检测方法已无法满足要求。针对这一问题,基于智能变电站体系架构,提出了一种将改进的密度聚类算法和改进的单类支持向量机算法相结合用于智能变电站异常数据流检测的方法。使用k-dist图优化密度聚类算法对正常数据流样本进行聚类,形成样本簇。使用改进的粒子群算法优化单类支持向量机算法建立相应的检测模型,对异常数据流进行检测。通过仿真与传统检测方法进行对比分析,验证了所提方法的有效性。结果表明,与传统OCSVM方法相比,所提异常检测方法将常规数据流样本拆分为多个OCSVM模型,可以更紧密地包裹正常样本,检测效果较为理想,检测准确率高于99%,可以满足异常数据检测对准确性和实时性的要求。
展开更多
关键词
智能变电站
通信网络异常
数据流
密度聚
类
算法
单类支持向量机算法
下载PDF
职称材料
题名
基于改进OCSVM的智能变电站数据流异常检测方法研究
被引量:
10
1
作者
闫梦秋
杨轶俊
赵舫
机构
深圳供电局有限公司
南方电网深圳数字电网研究院有限公司
浙江大学电气工程学院
出处
《电力系统保护与控制》
EI
CSCD
北大核心
2022年第6期100-106,共7页
基金
南方电网公司科技项目资助(0002200000072652)
国家重点研发计划资助(2017YFB0903100)。
文摘
目前智能变电站的数据流异常检测对准确性和实时性要求较高,采用简单阈值的检测方法已无法满足要求。针对这一问题,基于智能变电站体系架构,提出了一种将改进的密度聚类算法和改进的单类支持向量机算法相结合用于智能变电站异常数据流检测的方法。使用k-dist图优化密度聚类算法对正常数据流样本进行聚类,形成样本簇。使用改进的粒子群算法优化单类支持向量机算法建立相应的检测模型,对异常数据流进行检测。通过仿真与传统检测方法进行对比分析,验证了所提方法的有效性。结果表明,与传统OCSVM方法相比,所提异常检测方法将常规数据流样本拆分为多个OCSVM模型,可以更紧密地包裹正常样本,检测效果较为理想,检测准确率高于99%,可以满足异常数据检测对准确性和实时性的要求。
关键词
智能变电站
通信网络异常
数据流
密度聚
类
算法
单类支持向量机算法
Keywords
intelligent substation
abnormal communication network
data flow
density clustering algorithm
one-class support vector machine algorithm
分类号
TM63 [电气工程—电力系统及自动化]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于改进OCSVM的智能变电站数据流异常检测方法研究
闫梦秋
杨轶俊
赵舫
《电力系统保护与控制》
EI
CSCD
北大核心
2022
10
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部