A mini-plot field experiment was conducted on a loamy clay Oxisol to compare and evaluate P absorption and transfer in plant organs and P movement in soil profile at three P application depths under the soybean-citrus...A mini-plot field experiment was conducted on a loamy clay Oxisol to compare and evaluate P absorption and transfer in plant organs and P movement in soil profile at three P application depths under the soybean-citrus intercropping versus the monoculture using a ^32p tracer technique. Total P absorption (Pt) by soybean and P accumulation (Pa) in soybean organs decreased significantly (P 〈 0.05) under the intercropping in contrast to the monoculture. With intercropping, when ^32p was applied in topsoil (15 cm soil layer), total ^32p absorption (^32pt) in soybeans was significantly lower (P 〈 0.05), but when ^32p was applied to deeper soil layers (35 or 55 cm soil layer), ^32pt in soybeans was significantly greater (P 〈 0.05). The percentage of P in leaves to total P (Pa/Pt) and 32p in leaves to total ^32p (^32pa/^32pt) for soybean were ≥ 25% and those of root ≥ 12%. When P was applied ia topsoil and 55 cm soil layer, no significant differences were found between intercropping and monoculture for Pt of citrus. The P absorbed by citrus was transferred rapidly to the growing organs of aboveground during the experiment, and the speed of transferring to the growing organs slowed when P was applied to the deeper soil layers. In intercropping, P mobility was heightened in the soil profile, and P in deeper soil layers moved up to topsoil more rapidly.展开更多
This article presents a comprehensive mathematical model for the design and analysis of Dynamic Cellular Manufacturing Systems (DCMS). The proposed DCMS model considers several manufacturing attributes such as multi...This article presents a comprehensive mathematical model for the design and analysis of Dynamic Cellular Manufacturing Systems (DCMS). The proposed DCMS model considers several manufacturing attributes such as multi period production planning, dynamic system reconfiguration, duplicate machines, machine capacity, the available time for workers, worker assignments, and machine procurement. The objective is to minimize total costs; consisting of holding cost, outsourcing cost, inter-cell material handling cost, maintenance and overhead cost, machine relocation cost. While a study of published articles in the area of Cellular Manufacturing Systems (CMS) shows that workforce management issues have not sufficiently been addressed in the literature, the model presented also incorporates CMS workforce management issues such as salaries, hiring and firing costs of workers in addition to the manufacturing attributes. In-depth discussions on the results for two numerical examples are presented to illustrate applications of the proposed model. The model developed aims to raise the envelope by expanding and improving several CMS models previously presented in the literature.展开更多
基金Project supported by the Knowledge Innovation Programme of the Chinese Academy of Sciences (No. KZCX2-407).
文摘A mini-plot field experiment was conducted on a loamy clay Oxisol to compare and evaluate P absorption and transfer in plant organs and P movement in soil profile at three P application depths under the soybean-citrus intercropping versus the monoculture using a ^32p tracer technique. Total P absorption (Pt) by soybean and P accumulation (Pa) in soybean organs decreased significantly (P 〈 0.05) under the intercropping in contrast to the monoculture. With intercropping, when ^32p was applied in topsoil (15 cm soil layer), total ^32p absorption (^32pt) in soybeans was significantly lower (P 〈 0.05), but when ^32p was applied to deeper soil layers (35 or 55 cm soil layer), ^32pt in soybeans was significantly greater (P 〈 0.05). The percentage of P in leaves to total P (Pa/Pt) and 32p in leaves to total ^32p (^32pa/^32pt) for soybean were ≥ 25% and those of root ≥ 12%. When P was applied ia topsoil and 55 cm soil layer, no significant differences were found between intercropping and monoculture for Pt of citrus. The P absorbed by citrus was transferred rapidly to the growing organs of aboveground during the experiment, and the speed of transferring to the growing organs slowed when P was applied to the deeper soil layers. In intercropping, P mobility was heightened in the soil profile, and P in deeper soil layers moved up to topsoil more rapidly.
文摘This article presents a comprehensive mathematical model for the design and analysis of Dynamic Cellular Manufacturing Systems (DCMS). The proposed DCMS model considers several manufacturing attributes such as multi period production planning, dynamic system reconfiguration, duplicate machines, machine capacity, the available time for workers, worker assignments, and machine procurement. The objective is to minimize total costs; consisting of holding cost, outsourcing cost, inter-cell material handling cost, maintenance and overhead cost, machine relocation cost. While a study of published articles in the area of Cellular Manufacturing Systems (CMS) shows that workforce management issues have not sufficiently been addressed in the literature, the model presented also incorporates CMS workforce management issues such as salaries, hiring and firing costs of workers in addition to the manufacturing attributes. In-depth discussions on the results for two numerical examples are presented to illustrate applications of the proposed model. The model developed aims to raise the envelope by expanding and improving several CMS models previously presented in the literature.