期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
FLDA方法在单样本人脸识别中的应用研究
1
作者 倪剑虹 王晶 +1 位作者 崔玉红 刘永锋 《电视技术》 北大核心 2013年第15期181-184,共4页
在人脸识别应用中,当每个人有多个训练样本(MSPP)时,Fisher线性判别分析(FLDA)方法可以很好地用于特征提取。然而,当每个人只有一个训练样本(SSPP)时,因为类内散布矩阵为零矩阵,所以FLDA方法将不能使用。为了解决该问题,提出了一种比较... 在人脸识别应用中,当每个人有多个训练样本(MSPP)时,Fisher线性判别分析(FLDA)方法可以很好地用于特征提取。然而,当每个人只有一个训练样本(SSPP)时,因为类内散布矩阵为零矩阵,所以FLDA方法将不能使用。为了解决该问题,提出了一种比较新颖的方法来估计类内散布矩阵,借助于奇异值分解(SVD)方法,先将人脸图像分解成两部分,然后分别估计出类内散布矩阵及类间散布矩阵,使FLDA方法能够得到有效的应用。在ORL及Yale上的实验表明了提出的方法比现有的许多方法取得了更好的识别效果。 展开更多
关键词 单训练样本每人 奇异值分解 FISHER线性判别分析
下载PDF
自适应通用学习框架在人脸识别中的应用研究 被引量:1
2
作者 于延 王建华 孙惠杰 《计算机应用与软件》 CSCD 北大核心 2014年第7期173-176,共4页
现实生活中,人脸识别系统通常必须面对单样本每人(SSPP)的问题,即在数据库中每个人只有1张训练样本。这种情况下,系统不能很好地学习训练样本的判别信息,因而许多流行的人脸识别方法将不能很好地奏效。为了解决这个问题,自适应通用学... 现实生活中,人脸识别系统通常必须面对单样本每人(SSPP)的问题,即在数据库中每个人只有1张训练样本。这种情况下,系统不能很好地学习训练样本的判别信息,因而许多流行的人脸识别方法将不能很好地奏效。为了解决这个问题,自适应通用学习(AGL)方法利用一个通用判别模型来更好地区分各个单训练样本,同时,采用双线性表示算法来推测类间矩与类内矩;使得FLDA可以应用于单样本人脸识别。在ORL及FERET的实验表明,与其他几种常用的方法相比较,AGL在处理单样本人脸识别问题上取得了更好的结果。 展开更多
关键词 人脸识别 单训练样本每人 通用学习框架 FISHER线性判别分析
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部