期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
解一维和二维对流扩散方程的单调差分格式 被引量:1
1
作者 金承日 丁效华 《黑龙江大学自然科学学报》 CAS 1998年第1期12-15,共4页
对一维和二维对流扩散方程提出了两个高精度的二层单调差分格式,其截断误差为O[(Δt)2+(Δt)(Δx)2+(Δx)4]。文末的数值例子说明本方法是有效的。
关键词 对流扩散方程 单调差分格式 截断误差
下载PDF
A 5th order monotonicity-preserving upwind compact difference scheme 被引量:6
2
作者 HE ZhiWei LI XinLiang +1 位作者 FU DeXun MA YanWen 《Science China(Physics,Mechanics & Astronomy)》 SCIE EI CAS 2011年第3期511-522,共12页
Based on an upwind compact difference scheme and the idea of monotonicity-preserving, a 5th order monotonicity-preserving upwind compact difference scheme (m-UCD5) is proposed. The new difference scheme not only ret... Based on an upwind compact difference scheme and the idea of monotonicity-preserving, a 5th order monotonicity-preserving upwind compact difference scheme (m-UCD5) is proposed. The new difference scheme not only retains the advantage of good resolution of high wave number but also avoids the Gibbs phenomenon of the original upwind compact difference scheme. Compared with the classical 5th order WENO difference scheme, the new difference scheme is simpler and small in diffusion and computation load. By employing the component-wise and characteristic-wise methods, two forms of the new difference scheme are proposed to solve the N-S/Euler equation. Through the Sod problem, the Shu-Osher problem and tbe two-dimensional Double Mach Reflection problem, numerical solutions have demonstrated this new scheme does have a good resolution of high wave number and a robust ability of capturing shock waves, leading to a conclusion that the new difference scheme may be used to simulate complex flows containing shock waves. 展开更多
关键词 upwind compact scheme monotonicity-preserving compressible flows shock capturing scheme
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部