期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
效应代数上态射的一些性质 被引量:4
1
作者 王敏 曹怀信 《纺织高校基础科学学报》 CAS 2011年第4期505-509,共5页
研究了效应代数上态射、单调态射和弱单调态射的一些性质,证明了如果E1,E2为格效应代数,:E1→E2是1-1态射且是格同态,那么是单调态射.反之,若:E1→E2是满的单调态射,则是格同态。如果E1,E2是格序列效应代数,:E1→E2是双射... 研究了效应代数上态射、单调态射和弱单调态射的一些性质,证明了如果E1,E2为格效应代数,:E1→E2是1-1态射且是格同态,那么是单调态射.反之,若:E1→E2是满的单调态射,则是格同态。如果E1,E2是格序列效应代数,:E1→E2是双射且为态射,那么是单调态射当且仅当(a∧b)=(a)∧(b),a,b∈E1. 展开更多
关键词 效应代数 单调态射 单调态射
下载PDF
效应代数的表示及弱表示 被引量:8
2
作者 张巧卫 曹怀信 陆玲 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期198-202,共5页
目的给出效应代数的表示及弱表示的定义,研究幂集和布尔代数的可表示性。方法用效应代数表示的定义及效应代数中态射的性质得出结论。结果证明了E是可表示的,则E是弱可表示的;若E是弱可表示的,则由E到Hilbert空间效应代数的强态射诱导... 目的给出效应代数的表示及弱表示的定义,研究幂集和布尔代数的可表示性。方法用效应代数表示的定义及效应代数中态射的性质得出结论。结果证明了E是可表示的,则E是弱可表示的;若E是弱可表示的,则由E到Hilbert空间效应代数的强态射诱导的效应代数是可表示的;布尔代数格同构和效应代数同构是一致的。结论幂集作为一个效应代数是可表示的,任何有限布尔代数是可表示的效应代数。 展开更多
关键词 效应代数 单调态射 表示 弱表示
下载PDF
Some Dynamic and Combinatorial Properties of One Parameter Families of Unimodal Maps with Monotonicity
3
作者 John Taylor 《Journal of Mathematics and System Science》 2013年第6期301-308,共8页
It is known that certain one parameter families of unimodal maps of the interval have a topological universality with regard to their dynamic behavior [ 1, 2]. As a parameter is smoothly increased, a fascinating varie... It is known that certain one parameter families of unimodal maps of the interval have a topological universality with regard to their dynamic behavior [ 1, 2]. As a parameter is smoothly increased, a fascinating variety of dynamic behaviors are produced. For some families the behaviors are monotonic in the parameter, while in others they are not [3]. The question is what sort of conditions on a one parameter family will ensure this monotonicity of the behavior with the parameter? The answer is unknown and will not be given here. What we do instead is to investigate certain geometric-dynamic-combinatorial consequences of assuming that the family has this monotonicity. Specifically, using tools of symbolic dynamics, state space is "course grained" with a finite alphabet. We decompose a non-invertible map into nonlinear but invertible pieces. From these invertible pieces, we form inverse maps via composition along words. Equations of motion are developed for both forward and inverse orbits (in both the variables of state space and the parameter), and an equation relating forward and inverse motions at fix-points is exhibited. Finally, we deduce a list of conditions, each of which is equivalent to monotone behavior. One of these conditions states that simple parity characteristics of words correspond to definite dynamics near fixed-points and vice versa. 展开更多
关键词 One parameter family unimodal map kneading theory connection equation.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部