基于弱拟牛顿方程,Leong W J等人提出了一种单调梯度法,该算法在每次迭代时利用对角矩阵逼近Hessian矩阵,使计算量和存储量明显减少,并且此算法对凸函数具有收敛性。在此算法的基础上,进一步研究了算法对于一般函数的收敛性,并证明了在...基于弱拟牛顿方程,Leong W J等人提出了一种单调梯度法,该算法在每次迭代时利用对角矩阵逼近Hessian矩阵,使计算量和存储量明显减少,并且此算法对凸函数具有收敛性。在此算法的基础上,进一步研究了算法对于一般函数的收敛性,并证明了在一定的假设条件下算法仍具有全局收敛性、R-线性收敛性和超线性收敛性。展开更多
The main purpose of this paper is to introduce and deal with a self adaptive inertial subgradient extragradient iterative algorithm with a new and interesting stepsize rule in real Hilbert spaces.Under some proper con...The main purpose of this paper is to introduce and deal with a self adaptive inertial subgradient extragradient iterative algorithm with a new and interesting stepsize rule in real Hilbert spaces.Under some proper control conditions imposed on the coefficients and operators,we prove a new strong convergence result for solving variational inequalities with regard to pseudomonotone and Lipschitzian operators.Moreover,some numerical simulation results are given to show the rationality and validity of our algorithm.展开更多
文摘基于弱拟牛顿方程,Leong W J等人提出了一种单调梯度法,该算法在每次迭代时利用对角矩阵逼近Hessian矩阵,使计算量和存储量明显减少,并且此算法对凸函数具有收敛性。在此算法的基础上,进一步研究了算法对于一般函数的收敛性,并证明了在一定的假设条件下算法仍具有全局收敛性、R-线性收敛性和超线性收敛性。
文摘The main purpose of this paper is to introduce and deal with a self adaptive inertial subgradient extragradient iterative algorithm with a new and interesting stepsize rule in real Hilbert spaces.Under some proper control conditions imposed on the coefficients and operators,we prove a new strong convergence result for solving variational inequalities with regard to pseudomonotone and Lipschitzian operators.Moreover,some numerical simulation results are given to show the rationality and validity of our algorithm.