基于弱拟牛顿方程,Leong W J等人提出了一种单调梯度法,该算法在每次迭代时利用对角矩阵逼近Hessian矩阵,使计算量和存储量明显减少,并且此算法对凸函数具有收敛性。在此算法的基础上,进一步研究了算法对于一般函数的收敛性,并证明了在...基于弱拟牛顿方程,Leong W J等人提出了一种单调梯度法,该算法在每次迭代时利用对角矩阵逼近Hessian矩阵,使计算量和存储量明显减少,并且此算法对凸函数具有收敛性。在此算法的基础上,进一步研究了算法对于一般函数的收敛性,并证明了在一定的假设条件下算法仍具有全局收敛性、R-线性收敛性和超线性收敛性。展开更多
文摘基于弱拟牛顿方程,Leong W J等人提出了一种单调梯度法,该算法在每次迭代时利用对角矩阵逼近Hessian矩阵,使计算量和存储量明显减少,并且此算法对凸函数具有收敛性。在此算法的基础上,进一步研究了算法对于一般函数的收敛性,并证明了在一定的假设条件下算法仍具有全局收敛性、R-线性收敛性和超线性收敛性。