The paper presents a preview controller design for ATS (active trailer steering) systems to improve high-speed stability of AHVs (articulated heavy vehicles). An AHV consists of a towing unit, namely tractor or tr...The paper presents a preview controller design for ATS (active trailer steering) systems to improve high-speed stability of AHVs (articulated heavy vehicles). An AHV consists of a towing unit, namely tractor or truck, and one or more towed units which called trailers. Individual units are connected to one another at articulated joints by mechanical couplings. Due to the multi-unit configurations, AHVs exhibit unique unstable motion modes, including jack-knifing, trailer swing and rollover. These unstable motion modes are the leading cause of highway accidents. To prevent these unstable motion modes, the preview controller, namely the LPDP (lateral position deviation preview) controller, is proposed. For a truck/full-trailer combination, the LPDP controller is designed to control the steering of the front and rear axle wheels of the trailing unit. The calculation of the corrective steering angle of the trailer front axle wheels is based on the preview information of the lateral position deviation of the trajectory of the axle center from that of the truck front axle center. Similarly, the steering angle of the trailer rear axle wheels is calculated by using the lateral position deviation of the trajectory of the axle center from that of the truck front axle. To perform closed-loop dynamic simulations and evaluate the vehicle performance measure, a driver model is introduced and it 'derives' the AHV model based on well-defined testing specifications. The proposed preview control scheme in the continuous time domain is developed by using the LQR (linear quadratic regular) technique. The closed-loop simulation results indicate that the performance of the AHV with the LPDP controller is improved by decreasing rearward amplification ratio from the baseline value of 1.28 to 0.98 and reducing transient off-tracking by 95.03%. The proposed LPDP control algorithm provides an alternative method for the design optimization of AHVs with ATS systems.展开更多
The boost type power supplies are widely used in portable consumer electronics to step up the input voltage to adapt for the high voltage applications like light-emitting diode(LED) driving and liquid crystal display(...The boost type power supplies are widely used in portable consumer electronics to step up the input voltage to adapt for the high voltage applications like light-emitting diode(LED) driving and liquid crystal display(LCD) biasing.In these applications,a regulator with small volume,fewer external components and high efficiency is highly desired.This paper proposes a projected off-and on-time boost control scheme,based on which a monolithic IC with an on-chip VDMOS with 0.2 Ω on-state resistance RDS-ON was implemented in 1.5 μm bipolar-CMOS-DMOS(BCD) process.A 12 V,0.3 A boost regulator prototype is presented as well.With projected off-time and modulated on-time in continuous conduction mode(CCM),a quasi fixed frequency,which is preferred for ripple control,is realized.With projected on-time and modulated off-time in discontinuous conduction mode(DCM),pulse frequency modulation(PFM) operation,which is beneficial to light load efficiency improvement,is achieved without extra control circuitry.Measurement results show that an efficiency of 3% higher than that of a conventional method under 0.5 W output is achieved while a step load transient response comparable to that of current mode control is maintained as well.展开更多
文摘The paper presents a preview controller design for ATS (active trailer steering) systems to improve high-speed stability of AHVs (articulated heavy vehicles). An AHV consists of a towing unit, namely tractor or truck, and one or more towed units which called trailers. Individual units are connected to one another at articulated joints by mechanical couplings. Due to the multi-unit configurations, AHVs exhibit unique unstable motion modes, including jack-knifing, trailer swing and rollover. These unstable motion modes are the leading cause of highway accidents. To prevent these unstable motion modes, the preview controller, namely the LPDP (lateral position deviation preview) controller, is proposed. For a truck/full-trailer combination, the LPDP controller is designed to control the steering of the front and rear axle wheels of the trailing unit. The calculation of the corrective steering angle of the trailer front axle wheels is based on the preview information of the lateral position deviation of the trajectory of the axle center from that of the truck front axle center. Similarly, the steering angle of the trailer rear axle wheels is calculated by using the lateral position deviation of the trajectory of the axle center from that of the truck front axle. To perform closed-loop dynamic simulations and evaluate the vehicle performance measure, a driver model is introduced and it 'derives' the AHV model based on well-defined testing specifications. The proposed preview control scheme in the continuous time domain is developed by using the LQR (linear quadratic regular) technique. The closed-loop simulation results indicate that the performance of the AHV with the LPDP controller is improved by decreasing rearward amplification ratio from the baseline value of 1.28 to 0.98 and reducing transient off-tracking by 95.03%. The proposed LPDP control algorithm provides an alternative method for the design optimization of AHVs with ATS systems.
基金Project (No.90707002) supported by the National Natural Science Foundation of China
文摘The boost type power supplies are widely used in portable consumer electronics to step up the input voltage to adapt for the high voltage applications like light-emitting diode(LED) driving and liquid crystal display(LCD) biasing.In these applications,a regulator with small volume,fewer external components and high efficiency is highly desired.This paper proposes a projected off-and on-time boost control scheme,based on which a monolithic IC with an on-chip VDMOS with 0.2 Ω on-state resistance RDS-ON was implemented in 1.5 μm bipolar-CMOS-DMOS(BCD) process.A 12 V,0.3 A boost regulator prototype is presented as well.With projected off-time and modulated on-time in continuous conduction mode(CCM),a quasi fixed frequency,which is preferred for ripple control,is realized.With projected on-time and modulated off-time in discontinuous conduction mode(DCM),pulse frequency modulation(PFM) operation,which is beneficial to light load efficiency improvement,is achieved without extra control circuitry.Measurement results show that an efficiency of 3% higher than that of a conventional method under 0.5 W output is achieved while a step load transient response comparable to that of current mode control is maintained as well.