期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于改进的LeNet-5网络在单通道图像分类中的研究 被引量:4
1
作者 安源 刘春 +1 位作者 蔡朝晖 马英瑞 《信息技术》 2020年第12期8-10,16,共4页
针对卷积神经网络在进行图像分类时,存在单通道提取特征不充分和收敛慢等问题,提出一种改进的LeNet-5深度卷积神经网络模型。该模型对通道数量、层次结构等进行了改进,并设计局部误差结构,利用算法来增加局部误差产生数量和层间权值的... 针对卷积神经网络在进行图像分类时,存在单通道提取特征不充分和收敛慢等问题,提出一种改进的LeNet-5深度卷积神经网络模型。该模型对通道数量、层次结构等进行了改进,并设计局部误差结构,利用算法来增加局部误差产生数量和层间权值的调整次数。实验表明,与传统的LeNet-5网络相比,所提出模型收敛速度更快和分类准确率更高。 展开更多
关键词 图像分类 卷积神经网络 LeNet-5 单通道图像 卷积核
下载PDF
面向舰船目标检测的单通道复值SAR图像统计建模方法研究 被引量:3
2
作者 冷祥光 计科峰 +1 位作者 熊博莅 匡纲要 《雷达学报(中英文)》 CSCD 北大核心 2020年第3期477-496,共20页
合成孔径雷达(SAR)成像模式丰富、覆盖范围广、分辨率高,可以长期、动态、宏观地对海洋进行监测。在完全发展的相干斑假设条件下,传统单通道SAR图像舰船目标检测方法主要研究幅度信息。然而,其部分假设条件在高分辨率情形下并非严格成立... 合成孔径雷达(SAR)成像模式丰富、覆盖范围广、分辨率高,可以长期、动态、宏观地对海洋进行监测。在完全发展的相干斑假设条件下,传统单通道SAR图像舰船目标检测方法主要研究幅度信息。然而,其部分假设条件在高分辨率情形下并非严格成立,因此无法有效利用单通道SAR图像的相位或复值信息。该文面向舰船目标检测应用,将单通道复值SAR图像统计建模方法划分为幅度、相位和复值统计建模3个部分,首先简要综述了单通道SAR图像幅度统计建模方法,然后详细阐述了单通道SAR图像相位和复值统计建模方法,并重点介绍了其建模过程和参数估计方法。在此基础上,该文给出了作者研究小组在基于复值统计信息的单通道SAR图像舰船目标检测方面的部分最新研究结果,并分析展望了下一步研究方向。 展开更多
关键词 单通道SAR图像 舰船目标检测 复值信息 统计建模
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部