期刊文献+
共找到114篇文章
< 1 2 6 >
每页显示 20 50 100
基于全卷积网络的复杂背景红外弱小目标检测研究
1
作者 关晓丹 郑东平 肖成 《激光杂志》 CAS 北大核心 2024年第4期254-258,共5页
针对复杂背景红外弱小目标检测过程中存在的检测误差率高,检测时间过长等问题,提出基于全卷积网络的复杂背景红外弱小目标检测方法。分析复杂背景红外弱小目标检测的研究进展,找出不同方法的缺陷,采集红外图像,提取目标检测特征,并采用... 针对复杂背景红外弱小目标检测过程中存在的检测误差率高,检测时间过长等问题,提出基于全卷积网络的复杂背景红外弱小目标检测方法。分析复杂背景红外弱小目标检测的研究进展,找出不同方法的缺陷,采集红外图像,提取目标检测特征,并采用全卷积网络设计弱小目标检测的分类器,实现复杂背景红外弱小目标检测。实验结果表明,该方法的复杂背景红外弱小目标检测精度超过97%,具有较高的实际应用价值。 展开更多
关键词 卷积网络 红外弱小目标 检测精度 提取特征
下载PDF
改进全卷积神经网络的遥感图像小目标检测
2
作者 徐雪峰 郭广伟 黄余 《机械设计与制造》 北大核心 2024年第10期38-42,共5页
对遥感图像中小目标的检测进行研究,提出改进全卷积神经网络的检测新算法。首先,分析了分层概率图模型和深度学习的基本概念和模型。然后,提出分层概率图模型中分层马尔可夫随机场的后验边际模式的递归获取步骤。最后,将全卷积神经网络... 对遥感图像中小目标的检测进行研究,提出改进全卷积神经网络的检测新算法。首先,分析了分层概率图模型和深度学习的基本概念和模型。然后,提出分层概率图模型中分层马尔可夫随机场的后验边际模式的递归获取步骤。最后,将全卷积神经网络和分层概率图模型联合,实现对全卷积神经网络的改进,构建遥感图像小目标检测新方法。此外,在所提方法中,选用随机森林技术从分类学习样本中估计每个类和分辨率的后验概率。基于对某地区卫星数据集的处理,将所提出的检测方法与其他四种方法进行了对比。对比实验结果表明,与其他方法相比,所提出的检测方法对低矮植被、车辆、树等遥感图像中的小目标具有更高的检测准确率。 展开更多
关键词 目标检测 遥感图像 卷积神经网络 分层概率图模型 随机森林
下载PDF
基于深度学习的单阶段目标检测算法综述 被引量:13
3
作者 朱豪 周顺勇 +2 位作者 刘学 曾雅兰 李思诚 《工业控制计算机》 2023年第4期101-103,共3页
目标检测技术是计算机视觉技术的一个热点研究方向,该技术广泛应用于车辆导航、航空及其他重要领域,发展前景广阔。将深度学习应用到图像目标检测中能够学习到图像的高级特征,弥补传统算法的不足。首先,重点介绍了基于深度学习的单阶段... 目标检测技术是计算机视觉技术的一个热点研究方向,该技术广泛应用于车辆导航、航空及其他重要领域,发展前景广阔。将深度学习应用到图像目标检测中能够学习到图像的高级特征,弥补传统算法的不足。首先,重点介绍了基于深度学习的单阶段目标检测算法;分析了多种算法的结构和优缺点,然后对各算法做了归纳总结;最后,结合目标检测算法提出未来发展的方向与趋势。 展开更多
关键词 目标检测 计算机视觉 深度学习 阶段
下载PDF
改进YOLOv4的遥感图像目标检测算法 被引量:1
4
作者 闵锋 况永刚 +2 位作者 毛一新 彭伟明 郝琳琳 《计算机工程与设计》 北大核心 2024年第2期396-404,共9页
为有效解决遥感图像目标检测算法在复杂背景下的检测效果不佳的问题,提出一种改进YOLOv4的目标检测算法。设计一种跨阶段残差结构,替换原主干网络的简单残差结构,降低模型参数量和计算负担;引入CBAM注意力机制,加强CSP模块间有效特征交... 为有效解决遥感图像目标检测算法在复杂背景下的检测效果不佳的问题,提出一种改进YOLOv4的目标检测算法。设计一种跨阶段残差结构,替换原主干网络的简单残差结构,降低模型参数量和计算负担;引入CBAM注意力机制,加强CSP模块间有效特征交互;使用跨阶段分层卷积模块重构特征融合阶段对深层特征图的处理方式,防止网络退化和梯度消失;采用Mish激活函数,增强融合网络对非线性特征的提取能力。在RSOD、DIOR数据集上的实验结果表明,改进YOLOv4算法的测试mAP相比原YOLOv4算法分别高出4.5%、7.3%,其检测速度分别达到48 fps、45 fps,在保证实时性的同时检测精度有较大提升。 展开更多
关键词 遥感图像 目标检测 阶段残差结构 特征交互 阶段分层卷积模块 激活函数 非线性特征
下载PDF
基于多通道交叉注意力融合的三维目标检测算法
5
作者 鲁斌 杨振宇 +2 位作者 孙洋 刘亚伟 王明晗 《智能系统学报》 CSCD 北大核心 2024年第4期885-897,共13页
针对现有单阶段三维目标检测算法对点云下采样特征利用方式单一、特征对长程上下文信息的聚合程度无法满足算法性能提升需求的问题,本文提出了基于多通道交叉注意力融合的单阶段三维目标检测算法。首先,设计通道交叉注意力模块用于融合... 针对现有单阶段三维目标检测算法对点云下采样特征利用方式单一、特征对长程上下文信息的聚合程度无法满足算法性能提升需求的问题,本文提出了基于多通道交叉注意力融合的单阶段三维目标检测算法。首先,设计通道交叉注意力模块用于融合下采样特征,可基于交叉注意力机制在通道层面上增强多尺度特征对不同感受野下长程空间信息的表达能力;然后,提出级联特征激励模块,结合原始下采样特征对通道交叉注意力加权特征进行级联激励,提升算法对关键空间特征的学习能力。在公共自动驾驶数据集KITTI上进行了大量实验并与主流算法对比,本文算法作为单阶段目标检测算法,在车辆类别3个难度级别上的检测准确率分别为91.34%、79.85%和75.98%,较基线算法分别提升了4.83%、3.26%和3.32%。实验结果证明了本文算法及所提模块在三维目标检测任务上的有效性和先进性。 展开更多
关键词 三维点云 自动驾驶 激光雷达 深度学习 三维目标检测 柱体素 交叉注意力 阶段算法
下载PDF
基于转置卷积操作改进的单阶段多边框目标检测方法 被引量:7
6
作者 郭川磊 何嘉 《计算机应用》 CSCD 北大核心 2018年第10期2833-2838,共6页
针对单阶段多边框目标检测(SSD)模型在以高交并比(Io U)评估平均检测精度(m AP)时出现的精度下降问题,提出一种使用转置卷积操作构建的循环特征聚合模型。该模型以SSD模型为基础,使用Res Net 101作为特征提取网络。首先,利用转置卷积操... 针对单阶段多边框目标检测(SSD)模型在以高交并比(Io U)评估平均检测精度(m AP)时出现的精度下降问题,提出一种使用转置卷积操作构建的循环特征聚合模型。该模型以SSD模型为基础,使用Res Net 101作为特征提取网络。首先,利用转置卷积操作扩大网络结构中深层特征图的尺寸,为浅层特征图引入对目标的高层抽象和上下文信息;其次,使用全连接卷积层减少浅层特征图在进行特征聚合时出现偏差的可能性;最后,将浅层特征图与表示了上下文信息的深层特征图拼接,并使用1×1卷积操作恢复通道数。特征聚合过程可以循环进行多次。实验结果表明,使用KITTI数据集,以交并比(Io U)为0. 7评估平均检测精度,与原始SSD模型相比,循环特征聚合模型的检测精度提高了5. 1个百分点;与已有的精度最高Faster R-CNN相比,检测精度提高了2个百分点。循环特征聚合模型能有效提升平均目标检测精度,生成高质量的边界框。 展开更多
关键词 目标检测 转置卷积 特征聚合 阶段多边框目标检测模型
下载PDF
基于改进YOLOv4网络的红外遥感小目标检测方法
7
作者 马玉磊 钟潇柔 《电子器件》 CAS 2024年第4期1107-1115,共9页
针对传统检测方法对红外小目标检测性能不足的问题,提出一种基于迁移学习与改进YOLOv4网络的红外小目标检测系统。首先,对YOLOv4网络主干网提取的浅层特征进行增强,并结合深层特征与浅层特征来缓解红外小目标难以检测的问题;其次,为YOL... 针对传统检测方法对红外小目标检测性能不足的问题,提出一种基于迁移学习与改进YOLOv4网络的红外小目标检测系统。首先,对YOLOv4网络主干网提取的浅层特征进行增强,并结合深层特征与浅层特征来缓解红外小目标难以检测的问题;其次,为YOLOv4网络的检测头模块增加注意力机制,使网络关注于特征图中的红外小目标,从而降低背景对小目标检测的干扰;最终,在YOLOv4网络的训练过程中加入迁移学习方法,从而解决红外小目标标注训练数据不足的问题。基于公开红外小目标检测数据集的实验结果表明,该系统有效提高了YOLOv4网络对红外小目标的检测性能,且优于其他的对比检测模型。 展开更多
关键词 深度学习 红外遥感 目标检测 迁移学习 深度神经网络 阶段检测模型
下载PDF
基于深度学习的遥感目标检测技术 被引量:4
8
作者 章程军 胡晓兵 +1 位作者 魏上云 郭爽 《计算机工程与设计》 北大核心 2024年第2期594-600,共7页
针对遥感目标检测精度不足,提出一种改进YOLOv5s遥感目标检测算法。主干网络采用CSP-D模块进行特征提取,充分利用深层和浅层特征进行特征增强;颈部网络采用BiFPN结构进行特征融合,提高多尺度特征信息融合效率。实验结果表明,针对遥感目... 针对遥感目标检测精度不足,提出一种改进YOLOv5s遥感目标检测算法。主干网络采用CSP-D模块进行特征提取,充分利用深层和浅层特征进行特征增强;颈部网络采用BiFPN结构进行特征融合,提高多尺度特征信息融合效率。实验结果表明,针对遥感目标数据集DIOR,改进YOLOv5s网络平均准确率均值(mAP)提升2.1%,不同目标类别平均准确率(AP)均有提升,缓解原网络检测存在的漏检误检问题,改进网络检测速度仍能满足实时性要求,具有更优的检测性能。 展开更多
关键词 遥感图像 目标检测 YOLOv5s 特征增强 多尺度特征融合 深度学习 阶段网络
下载PDF
特征金字塔多尺度全卷积目标检测算法 被引量:19
9
作者 林志洁 罗壮 +1 位作者 赵磊 鲁东明 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第3期533-540,共8页
基于区域建议网络构建一种特征金字塔多尺度网络结构,并结合全卷积操作完成微小目标与类别无关目标的检测.为了提升图像中微小目标的检测精度,构建基于侧链接融合的3层金字塔结构网络,充分利用语义级别比较低的图像卷积特征.为了提高类... 基于区域建议网络构建一种特征金字塔多尺度网络结构,并结合全卷积操作完成微小目标与类别无关目标的检测.为了提升图像中微小目标的检测精度,构建基于侧链接融合的3层金字塔结构网络,充分利用语义级别比较低的图像卷积特征.为了提高类别无关的图像目标检测鲁棒性,提出特定的非极大值抑制算法,在重叠目标过滤时消除冗余目标窗口,并对目标窗口进行位置精修.在PASCAL VOC 2007、PASCAL VOC 2012以及古代绘画数据集上的实验结果表明:所提算法对于微小目标、多尺度目标检测及种类无关的目标检测的检测精度高于已有算法. 展开更多
关键词 图像目标检测 图像特征金字塔 多尺度卷积 微小目标检测 类别无关目标检测
下载PDF
集成多种上下文与混合交互的显著性目标检测
10
作者 夏晨星 陈欣雨 +4 位作者 孙延光 葛斌 方贤进 高修菊 张艳 《电子与信息学报》 EI CAS CSCD 北大核心 2024年第7期2918-2931,共14页
显著性目标检测目的是识别和分割图像中的视觉显著性目标,它是计算机视觉任务及其相关领域的重要研究内容之一。当下基于全卷积网络(FCNs)的显著性目标检测方法已经取得了不错的性能,然而现实场景中的显著性目标类型多变且尺寸不固定,... 显著性目标检测目的是识别和分割图像中的视觉显著性目标,它是计算机视觉任务及其相关领域的重要研究内容之一。当下基于全卷积网络(FCNs)的显著性目标检测方法已经取得了不错的性能,然而现实场景中的显著性目标类型多变且尺寸不固定,这使得准确检测并完整分割出显著性目标仍然是一个巨大的挑战。为此,该文提出集成多种上下文和混合交互的显著性目标检测方法,通过利用密集上下文信息探索模块和多源特征混合交互模块来高效预测显著性目标。密集上下文信息探索模块采用空洞卷积、不对称卷积和密集引导连接渐进地捕获具有强关联性的多尺度和多感受野上下文信息,通过集成这些信息来增强每个初始多层级特征的表达能力。多源特征混合交互模块包含多种特征聚合操作,可以自适应交互来自多层级特征中的互补性信息,以生成用于准确预测显著性图的高质量特征表示。此方法在5个公共数据集上进行了性能测试,实验结果表明,该文方法在不同的评估指标下与19种基于深度学习的显著性目标检测方法相比取得优越的预测性能。 展开更多
关键词 计算机视觉 显著性目标检测 卷积网络 上下文信息
下载PDF
基于YOLOv7-tiny改进的航拍小目标检测算法
11
作者 吴栋 张长亮 +3 位作者 濮约刚 张明庆 张启军 姜有田 《计算机工程与设计》 北大核心 2024年第10期2978-2985,共8页
针对YOLOv7-tiny算法,提出一种改进的小目标检测算法。该算法主要包括3个设计要点:采用MobileViT block模块,提升了特征提取能力;基于EVC Block模块,优化特征融合性能;采用MPDIoU损失函数代替CIoU损失函数,应对预测框和真实目标框的长... 针对YOLOv7-tiny算法,提出一种改进的小目标检测算法。该算法主要包括3个设计要点:采用MobileViT block模块,提升了特征提取能力;基于EVC Block模块,优化特征融合性能;采用MPDIoU损失函数代替CIoU损失函数,应对预测框和真实目标框的长宽比相同而真实大小不同时的情况。实验结果表明,与YOLOv7-tiny相比,改进后的算法在VisDrone数据集上的mAP值结果为42.5%,提升了5.6%。当输入图片大小为640×640像素时,改进后的FPS值为39.5,能够满足无人机在边缘设备上的实时检测要求。 展开更多
关键词 目标检测 移动视觉变换器 航拍数据集 注意力机制 增强值通道块 阶段交并比 卷积
下载PDF
基于全卷积神经网络的遥感图像海面目标检测 被引量:8
12
作者 喻钧 康秦瑀 +3 位作者 陈中伟 初苗 胡志毅 姚红革 《弹箭与制导学报》 北大核心 2020年第5期15-19,23,共6页
针对通常的神经网络算法在检测遥感图像海面目标时存在精确率低、漏检概率高的问题,改进了一种基于YOLOv3全卷积神经网络的遥感图像海面目标检测方法。首先根据海面目标的宽高比例,利用Kmeans++聚类算法,确定出适合于数据集的anchor box... 针对通常的神经网络算法在检测遥感图像海面目标时存在精确率低、漏检概率高的问题,改进了一种基于YOLOv3全卷积神经网络的遥感图像海面目标检测方法。首先根据海面目标的宽高比例,利用Kmeans++聚类算法,确定出适合于数据集的anchor box值;接着采用FPN思想进行特征融合;最后,选用GIOU作为坐标预测的损失函数,进一步优化检测结果。实验表明:文中方法在遥感图像海面目标检测中的平均精确率为90.82%,相比于其他算法平均提高了5.34%。 展开更多
关键词 YOLOv3 卷积神经网络 遥感图像 目标检测
下载PDF
面向遥感图像的多阶段特征融合目标检测方法 被引量:1
13
作者 陈立 张帆 +1 位作者 郭威 黄赟 《电子学报》 EI CAS CSCD 北大核心 2023年第12期3520-3528,共9页
遥感图像目标具有多尺度、大横纵比、多角度等特性,给传统的目标检测方法带来了新的挑战.针对现有方法应用于目标尺度小、横纵比例不均衡的遥感图像时存在的精度下降问题,提出一种基于多阶段特征融合的目标检测方法MF2M(Multi-stage Fea... 遥感图像目标具有多尺度、大横纵比、多角度等特性,给传统的目标检测方法带来了新的挑战.针对现有方法应用于目标尺度小、横纵比例不均衡的遥感图像时存在的精度下降问题,提出一种基于多阶段特征融合的目标检测方法MF2M(Multi-stage Feature Fusion Method).该方法在一阶段对特征图通道进行组合拆分,再采用卷积拼接的融合方式聚合通道维度的特征,从而强化输出的目标空间轮廓信息;二阶段设计多比例的非对称卷积块,增强大横纵比目标的高维全局特征,改善目标与检测框匹配粗糙的问题,同时利用串并行相结合的处理方式减少冗余卷积参数,加速网络收敛.在DOTA(Dataset for Object deTection in Aerial images)数据集上的实验结果表明,基准方法引入MF2M后,在保证检测速度的前提下精度指标mAP提高至76.44%,结果验证了所提算法的有效性与可靠性. 展开更多
关键词 遥感图像 目标检测 阶段特征融合 通道拼接 非对称卷积
下载PDF
基于单阶段网络模型的目标检测改进算法 被引量:9
14
作者 王燕妮 刘祥 刘江 《探测与控制学报》 CSCD 北大核心 2021年第2期56-62,68,共8页
针对目前单阶段目标检测算法中存在的误检、漏检以及检测精度不够高等问题,提出一种基于单阶段网络模型的目标检测改进算法。该算法使用深度残差网络对基础网络进行替换,提取更优秀的特征;增加一层用于检测小目标的底层特征图;结合反卷... 针对目前单阶段目标检测算法中存在的误检、漏检以及检测精度不够高等问题,提出一种基于单阶段网络模型的目标检测改进算法。该算法使用深度残差网络对基础网络进行替换,提取更优秀的特征;增加一层用于检测小目标的底层特征图;结合反卷积和特征融合的方法,对提取出的高层特征图与底层特征图进行融合,使新的特征图中包含更丰富的上下文信息;设计更密集的检测框且在每层卷积层后都添加批规范化操作以提升模型训练速度,防止过拟合。仿真实验结果表明,改进算法在PASCAL VOC2007数据集上较原始算法检测精度提升1.3%,检测效果更加准确,同时改进算法显著改善了误检、漏检等问题;但由于网络复杂度过高,导致检测速度有所下降。 展开更多
关键词 目标检测 阶段多框目标检测 深度残差网络 特征融合
下载PDF
特征增强的单阶段遥感图像目标检测模型 被引量:5
15
作者 汪西莉 梁敏 刘涛 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2022年第3期160-170,共11页
随着卷积神经网络的发展,遥感图像目标检测性能提升明显,但场景的复杂性和目标大小、形态的多样性依然对目标检测带来挑战。针对复杂情况下不同大小目标的检测问题进行研究。特征金字塔结构是解决不同大小目标检测的有效方法,但其逐层... 随着卷积神经网络的发展,遥感图像目标检测性能提升明显,但场景的复杂性和目标大小、形态的多样性依然对目标检测带来挑战。针对复杂情况下不同大小目标的检测问题进行研究。特征金字塔结构是解决不同大小目标检测的有效方法,但其逐层传递特征的方式可能产生特征丢失问题,故提出跳跃连接特征金字塔模块来增强特征金字塔结构中各层特征的语义和细节信息。同时,使用位置注意力强化目标区域特征是提升目标检出率的有效方法,并有助于复杂场景下目标的检测,但现有的位置注意力往往同时强化了不精确的预测结果,对最终预测结果产生干扰。为此提出基于锚框的位置注意力模块,强化更可能产生精确预测结果的特征区域。将跳跃连接特征金字塔模块和基于锚框的位置注意力模块嵌入到RetinaNet模型中,形成端到端的特征增强的单阶段遥感图像目标检测模型FENet(Feature Enhanced Network)。针对复杂的遥感影像目标检测进行实验,在UCAS-AOD数据集上FENet模型mAP比FAN(Face Attention Network)高1.78%,在RSOD数据集上比FAN模型提升了1.48%,且超越了其他先进模型。此外,FENet在单块Titan X GPU上对800×800图像的测试时间是0.058 s。实验结果表明,与同类模型相比,所提模型增强了目标的特征提取能力,进而提升了检测性能。 展开更多
关键词 遥感图像 特征金字塔 位置注意力 锚框 阶段目标检测
下载PDF
基于全卷积神经网络的空间目标检测追踪算法 被引量:5
16
作者 陈梅 朱凌寒 +1 位作者 曾梓浩 赵坤鹏 《传感器与微系统》 CSCD 2019年第10期150-153,共4页
针对机器人图形化示教编程系统中复杂背景对示教物的检测产生干扰的问题,提出一种基于全卷积神经网络的空间目标检测追踪算法。通过网络训练,识别目标、分割图像,经简单二值化、形态学处理去噪点,求取最大连通域的质心,利用双目视觉空... 针对机器人图形化示教编程系统中复杂背景对示教物的检测产生干扰的问题,提出一种基于全卷积神经网络的空间目标检测追踪算法。通过网络训练,识别目标、分割图像,经简单二值化、形态学处理去噪点,求取最大连通域的质心,利用双目视觉空间坐标转换确定目标位置。实验结果表明:对比现有普通算法,该算法可针对性识别目标,扩大示教物运动范围,降低示教复杂轨迹的难度,提高对机器人的控制精度。 展开更多
关键词 机器人 示教编程系统 卷积神经网络 目标检测与追踪
下载PDF
双特征流融合和边界感知的显著性目标检测
17
作者 杨鑫 朱恒亮 毛国君 《计算机工程与应用》 CSCD 北大核心 2024年第10期227-236,共10页
显著性目标检测是计算机视觉领域的热门研究方向之一,许多基于深度学习的检测算法虽然已经取得了显著的成果,但是仍然存在待测目标漏检误检和边界模糊等问题。针对这些问题提出了一种基于双特征流融合和边界感知的目标检测算法,通过改... 显著性目标检测是计算机视觉领域的热门研究方向之一,许多基于深度学习的检测算法虽然已经取得了显著的成果,但是仍然存在待测目标漏检误检和边界模糊等问题。针对这些问题提出了一种基于双特征流融合和边界感知的目标检测算法,通过改变输入图像尺寸来丰富多尺度信息,并自顶向下逐层聚合特征得到精细的预测结果。首先将输入图像调整为两种不同分辨率分别送入编码器,提取丰富的多层级特征形成双特征流;其次将双特征流自顶向下逐层融合,生成由粗到细的显著图;最后构建了边界感知结构,凭借上下文语义信息的指导生成精细的物体轮廓。在五个公开数据集上进行了大量实验,实验结果表明,所提算法在结构相似性(Sm)等多个指标上取得了更高的检测精度,生成的显著图目标完整且边缘清晰。 展开更多
关键词 显著性目标检测 卷积神经网络 多尺度学习 双特征流融合 边界感知
下载PDF
深度学习中的单阶段小目标检测方法综述 被引量:58
18
作者 李科岑 王晓强 +4 位作者 林浩 李雷孝 杨艳艳 孟闯 高静 《计算机科学与探索》 CSCD 北大核心 2022年第1期41-58,共18页
随着深度学习的不断发展,目标检测技术逐步从基于传统的手工检测方法向基于深度神经网络的检测方法转变。在众多基于深度学习的目标检测方法中,基于深度学习的单阶段目标检测方法因其网络结构较简单、运行速度较快以及具有更高的检测效... 随着深度学习的不断发展,目标检测技术逐步从基于传统的手工检测方法向基于深度神经网络的检测方法转变。在众多基于深度学习的目标检测方法中,基于深度学习的单阶段目标检测方法因其网络结构较简单、运行速度较快以及具有更高的检测效率而被广泛运用。但现有的基于深度学习的单阶段目标检测方法由于小目标物体包含的特征信息较少、分辨率较低、背景信息较复杂、细节信息不明显以及定位精度要求较高等原因,导致在检测过程中对小目标物体的检测效果不理想,使得模型检测精度降低。针对目前基于深度学习的单阶段目标检测方法存在的问题,研究了大量基于深度学习的单阶段小目标检测技术。首先从单阶段目标检测方法的AnchorBox、网络结构、交并比函数以及损失函数等几个方面,系统地总结了针对小目标检测的优化方法;其次列举了常用的小目标检测数据集及其应用领域,并给出在各小目标检测数据集上的检测结果图;最后探讨了基于深度学习的单阶段小目标检测方法的未来研究方向。 展开更多
关键词 深度学习 阶段目标检测 目标检测
下载PDF
融合全卷积神经网络和视觉显著性的红外小目标检测 被引量:17
19
作者 刘俊明 孟卫华 《光子学报》 EI CAS CSCD 北大核心 2020年第7期40-50,共11页
为提高复杂背景和噪声干扰下红外小目标检测性能,提出了融合深度神经网络和视觉目标显著性的单阶段红外小目标检测算法.首先设计了基于编码器-解码器架构的轻量级全卷积神经网络对红外图像进行分割,实现背景抑制和目标增强;然后利用红... 为提高复杂背景和噪声干扰下红外小目标检测性能,提出了融合深度神经网络和视觉目标显著性的单阶段红外小目标检测算法.首先设计了基于编码器-解码器架构的轻量级全卷积神经网络对红外图像进行分割,实现背景抑制和目标增强;然后利用红外小目标的显著性特征进一步抑制虚警;最后采用自适应阈值法分离出小目标.网络结构中通过引入多个下采样层降低计算量并增大感受野;通过引入多尺度特征提升背景抑制能力;通过引入注意力机制提升模型训练效果.在真实红外图像上的测试表明,本文算法在检测率、虚警率和运算时间等方面都优于典型红外小目标检测算法,适合进行复杂背景下的红外小目标检测. 展开更多
关键词 深度学习 目标检测 红外 卷积神经网络 多尺度特征 显著性 目标
下载PDF
基于深度学习的单阶段目标检测算法研究综述 被引量:42
20
作者 刘俊明 孟卫华 《航空兵器》 CSCD 北大核心 2020年第3期44-53,共10页
近年来,深度学习技术推动目标检测算法取得了突破式进展。基于深度学习的目标检测算法可分为两阶段检测算法和单阶段检测算法。相比两阶段检测算法,单阶段检测算法的结构简单、计算高效,同时具备不错的检测精度,在实时目标检测领域中具... 近年来,深度学习技术推动目标检测算法取得了突破式进展。基于深度学习的目标检测算法可分为两阶段检测算法和单阶段检测算法。相比两阶段检测算法,单阶段检测算法的结构简单、计算高效,同时具备不错的检测精度,在实时目标检测领域中具有较高的研究和应用价值。本文首先回顾了单阶段检测算法的发展历史,分析总结了相关算法的优缺点,然后归纳提出了单阶段目标检测算法的通用框架,接着对框架中的特征提取模块和检测器进行了深入分析,指出了其对算法性能的影响,最后对单阶段检测算法的发展趋势进行了展望。 展开更多
关键词 深度学习 阶段目标检测算法 特征提取 特征融合 ANCHOR 损失函数 人工智能
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部