期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
点云多尺度编码的单阶段3D目标检测网络
1
作者 韩俊博 胡海洋 +2 位作者 李忠金 潘开来 王利红 《中国图象图形学报》 CSCD 北大核心 2024年第11期3417-3432,共16页
目的自动引导运输小车(automatic guided vehicles,AGV)在工厂中搬运货物时会沿着规定路线运行,但是在靠近障碍物时只会简单地自动停止,无法感知障碍物的具体位置和大小,为了让AGV小车在复杂的工业场景中检测出各种障碍物,提出了一个点... 目的自动引导运输小车(automatic guided vehicles,AGV)在工厂中搬运货物时会沿着规定路线运行,但是在靠近障碍物时只会简单地自动停止,无法感知障碍物的具体位置和大小,为了让AGV小车在复杂的工业场景中检测出各种障碍物,提出了一个点云多尺度编码的单阶段3D目标检测网络(multi-scale encoding for single-stage 3D object detector from point clouds,MSE-SSD)。方法首先,该网络通过可学习的前景点下采样模块来对原始点云进行下采样,以精确地分割出前景点。其次,将这些前景点送入多抽象尺度特征提取模块进行处理,该模块能够分离出不同抽象尺度的特征图并对它们进行自适应地融合,以减少特征信息的丢失。然后,从特征图中预测出中心点,通过多距离尺度特征聚合模块将中心点周围的前景点按不同距离尺度进行聚合编码,得到语义特征向量。最后,利用中心点和语义特征向量一起预测包围框。结果MSE-SSD在自定义数据集中进行实验,多个目标的平均精度(average precision,AP)达到了最优,其中,在困难级别下空AGV分类、简单级别下载货AGV分类比排名第2的IASSD(learning highly efficient point-based detectors for 3D LiDAR point clouds)高出1.27%、0.08%,在简单级别下工人分类比排名第2的SA-SSD(structure aware single-stage 3D object detection from point cloud)高出0.71%。网络运行在单个RTX 2080Ti GPU上检测速度高达77帧/s,该速度在所有主流网络中排名第2。将训练好的网络部署在AGV小车搭载的开发板TXR上,检测速度达到了8.6帧/s。结论MSE-SSD在AGV小车避障检测方面具有较高的精确性和实时性。 展开更多
关键词 3D目标检测 单阶段检测网络 点云下采样 点云特征提取 点云特征聚合
原文传递
基于改进YOLOX的钢材表面缺陷检测研究 被引量:3
2
作者 刘毅 蒋三新 《现代电子技术》 北大核心 2024年第9期131-138,共8页
针对目前单阶段目标检测网络YOLOX的特征提取能力不足、特征融合不充分以及钢材表面缺陷检测精度不高等问题,提出一种改进YOLOX的钢材表面缺陷检测算法。首先,在Backbone部分引入改进的SE注意力机制,增添一条最大池化层分支,进行权重融... 针对目前单阶段目标检测网络YOLOX的特征提取能力不足、特征融合不充分以及钢材表面缺陷检测精度不高等问题,提出一种改进YOLOX的钢材表面缺陷检测算法。首先,在Backbone部分引入改进的SE注意力机制,增添一条最大池化层分支,进行权重融合,强化重要的特征通道;其次,在Neck部分引入ASFF模块,充分利用不同尺度的特征,更好地进行特征融合;最后,针对数据集所呈现的特点,将IOU损失函数替换为EIOU损失函数,改善模型定位不准确的问题,提高缺陷检测精度。实验结果表明,改进的YOLOX算法具有良好的检测效果,在NEU⁃DET数据集上的mAP达到了75.66%,相比原始YOLOX算法提高了3.74%,较YOLOv6提升了2.76%,检测精度优于其他主流算法。 展开更多
关键词 YOLOX 阶段目标检测网络 SE注意力机制 ASFF模块 表面缺陷检测 EIOU损失函数
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部