Surface wave dynamics of falling film on the surface of periodic rectangular wall under monochromatic-frequency flowrate forcing disturbances is studied via numerical simulation. Waveforms formed on the periodic recta...Surface wave dynamics of falling film on the surface of periodic rectangular wall under monochromatic-frequency flowrate forcing disturbances is studied via numerical simulation. Waveforms formed on the periodic rectangular wall are different from those on the flat plate. At low frequency, the perturbation introduced at the inlet first undergoes a steady flow region and then develops into solitary waves. When the frequency becomes higher, solitary waves disappear. Film deformations in the steady flow region and characteristics of solitary waves are studied as the film travels down. There are circulations at the depression of periodic wall which are dependent on the local film characteristics and geometry of the corrugation. Moreover, the flow rate and geometry of the corrugations can also affect the evolvement of the monochromatic perturbation.展开更多
As it is evident from the practice of construction and maintenance of thin retaining walls, the degree of developing of frictional forces in interlock connections of steel sheet U-shape piles essentially influences th...As it is evident from the practice of construction and maintenance of thin retaining walls, the degree of developing of frictional forces in interlock connections of steel sheet U-shape piles essentially influences the realization of the values of geometric characteristics of the piles cross-section (the moment of inertia and the section modulus) reduced to the length unit of the construction. The article offers new and simple solutions for realization and economically effective technological approaches to provide joint work of the sheet piles being considered, which improve the adequacy of design and reliability of maintenance of thin retaining walls.展开更多
基金Supported by National Natural Science Foundation of China (No. 20976118)
文摘Surface wave dynamics of falling film on the surface of periodic rectangular wall under monochromatic-frequency flowrate forcing disturbances is studied via numerical simulation. Waveforms formed on the periodic rectangular wall are different from those on the flat plate. At low frequency, the perturbation introduced at the inlet first undergoes a steady flow region and then develops into solitary waves. When the frequency becomes higher, solitary waves disappear. Film deformations in the steady flow region and characteristics of solitary waves are studied as the film travels down. There are circulations at the depression of periodic wall which are dependent on the local film characteristics and geometry of the corrugation. Moreover, the flow rate and geometry of the corrugations can also affect the evolvement of the monochromatic perturbation.
文摘As it is evident from the practice of construction and maintenance of thin retaining walls, the degree of developing of frictional forces in interlock connections of steel sheet U-shape piles essentially influences the realization of the values of geometric characteristics of the piles cross-section (the moment of inertia and the section modulus) reduced to the length unit of the construction. The article offers new and simple solutions for realization and economically effective technological approaches to provide joint work of the sheet piles being considered, which improve the adequacy of design and reliability of maintenance of thin retaining walls.