A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengi- neering (LIBB), Chinese Academy of Sciences (CAS). The system was designed to deliver a defined numbers of hydro- ge...A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengi- neering (LIBB), Chinese Academy of Sciences (CAS). The system was designed to deliver a defined numbers of hydro- gen ions, produced by a van de Graaff accelerator, in an en- ergy range of 2.0—3.0 MeV, into an area smaller than that of the nucleus of an individual living cell. The beam is colli- mated by a borosilicate glass capillary that forms the beam-line exit. An integrated computer program recognizes the cells and locates them one by one over the microbeam exit for irradiation. We present technical details of the CAS-LIBB microbeam facility, particularly on the collimator, hardware, control program, as well as cell irradiation proto- cols available. Various factors contributing to the targeting and positioning precision are discussed along with accuracy measurement results.展开更多
文摘A single-particle microbeam facility has been constructed at the Key Laboratory of Ion Beam Bioengi- neering (LIBB), Chinese Academy of Sciences (CAS). The system was designed to deliver a defined numbers of hydro- gen ions, produced by a van de Graaff accelerator, in an en- ergy range of 2.0—3.0 MeV, into an area smaller than that of the nucleus of an individual living cell. The beam is colli- mated by a borosilicate glass capillary that forms the beam-line exit. An integrated computer program recognizes the cells and locates them one by one over the microbeam exit for irradiation. We present technical details of the CAS-LIBB microbeam facility, particularly on the collimator, hardware, control program, as well as cell irradiation proto- cols available. Various factors contributing to the targeting and positioning precision are discussed along with accuracy measurement results.