期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
单agent强化学习与多agent强化学习比较研究 被引量:2
1
作者 吴元斌 《电脑与信息技术》 2009年第1期8-11,共4页
学习、交互及其结合是建立健壮、自治agent的关键必需能力。强化学习是agent学习的重要部分,agent强化学习包括单agent强化学习和多agent强化学习。文章对单agent强化学习与多agent强化学习进行了比较研究,从基本概念、环境框架、学习... 学习、交互及其结合是建立健壮、自治agent的关键必需能力。强化学习是agent学习的重要部分,agent强化学习包括单agent强化学习和多agent强化学习。文章对单agent强化学习与多agent强化学习进行了比较研究,从基本概念、环境框架、学习目标、学习算法等方面进行了对比分析,指出了它们的区别和联系,并讨论了它们所面临的一些开放性的问题。 展开更多
关键词 单agent强化学习 agent强化学习 博弈论
下载PDF
贝叶斯学习与强化学习结合技术的研究 被引量:2
2
作者 陈飞 王本年 +2 位作者 高阳 陈兆乾 陈世福 《计算机科学》 CSCD 北大核心 2006年第2期173-177,共5页
强化学习的研究需要解决的重要难点之一是:探索未知的动作和采用已知的最优动作之间的平衡。贝叶斯学习是一种基于已知的概率分布和观察到的数据进行推理,做出最优决策的概率手段。因此,把强化学习和贝叶斯学习相结合,使 Agent 可以根... 强化学习的研究需要解决的重要难点之一是:探索未知的动作和采用已知的最优动作之间的平衡。贝叶斯学习是一种基于已知的概率分布和观察到的数据进行推理,做出最优决策的概率手段。因此,把强化学习和贝叶斯学习相结合,使 Agent 可以根据已有的经验和新学到的知识来选择采用何种策略:探索未知的动作还是采用已知的最优动作。本文分别介绍了单 Agent 贝叶斯强化学习方法和多 Agent 贝叶斯强化学习方法:单 Agent 贝叶斯强化学习包括贝叶斯 Q 学习、贝叶斯模型学习以及贝叶斯动态规划等;多 Agent 贝叶斯强化学习包括贝叶斯模仿模型、贝叶斯协同方法以及在不确定下联合形成的贝叶斯学习等。最后,提出了贝叶斯在强化学习中进一步需要解决的问题。 展开更多
关键词 贝叶斯学习 强化学习 单agent agent
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部