This paper presents the changes of crust thickness and Poisson's ratios distribution in the Binchuan region, where the first air-gun transmitting station and it's a small dense array were deployed. From September 20...This paper presents the changes of crust thickness and Poisson's ratios distribution in the Binchuan region, where the first air-gun transmitting station and it's a small dense array were deployed. From September 2011 to January 2014, more than 239 teleseismic events of M≥ 6.0 were recorded in 16 stations in the Binchuan region. Their P-wave receiver functions were analyzed respectively. The high spatial resolution result shows that the average crust thickness of Binchuan region is 45.3km, it follows the rule of "deeper in the north and east part, shallower in the south and west part. " The deepest region is in Xiaoyindian Station; the crust thickness is 47.9km; the shallowest region is in Paiying Station, it has the thickness of 42. lkm. It shows that the deeper Moho surface nearby the Chenghai fault and shallower nearby the Honghe fault; the isoline distribution of thickness changes greatly nearby the Chenghai fault and slowly nearby the Honghe fault. From the distribution of Poisson's ratios, it is unevenly in the study area with a great difference from the north part to the south part, which shows a characteristic of "lower in the north, higher in the south". The Poisson's ratio nearby the Honghe fault is medium too high ( 0. 26 ≤ σ≤0. 29 ) ; lower nearby the Chenghai fault ( ≤0. 26). This paper concludes the possible reason of different characteristic between Poisson's ratio and crust thickness is thicker in the upper crust in the Binchuan region.展开更多
基金sponsored by the Special Science and Technology Program of Earthquake Administration of Yunnan Province (KJZX02)Academician Chen Yong Workstation Project of Earthquake Administration of Yunnan Province
文摘This paper presents the changes of crust thickness and Poisson's ratios distribution in the Binchuan region, where the first air-gun transmitting station and it's a small dense array were deployed. From September 2011 to January 2014, more than 239 teleseismic events of M≥ 6.0 were recorded in 16 stations in the Binchuan region. Their P-wave receiver functions were analyzed respectively. The high spatial resolution result shows that the average crust thickness of Binchuan region is 45.3km, it follows the rule of "deeper in the north and east part, shallower in the south and west part. " The deepest region is in Xiaoyindian Station; the crust thickness is 47.9km; the shallowest region is in Paiying Station, it has the thickness of 42. lkm. It shows that the deeper Moho surface nearby the Chenghai fault and shallower nearby the Honghe fault; the isoline distribution of thickness changes greatly nearby the Chenghai fault and slowly nearby the Honghe fault. From the distribution of Poisson's ratios, it is unevenly in the study area with a great difference from the north part to the south part, which shows a characteristic of "lower in the north, higher in the south". The Poisson's ratio nearby the Honghe fault is medium too high ( 0. 26 ≤ σ≤0. 29 ) ; lower nearby the Chenghai fault ( ≤0. 26). This paper concludes the possible reason of different characteristic between Poisson's ratio and crust thickness is thicker in the upper crust in the Binchuan region.