Concentrations of organic matter, iron and manganese in the deep sea surface sediments in the Nansha Islands sea area, South China Sea are measured. Horizontal and vertical distributions of iron and manganese are disc...Concentrations of organic matter, iron and manganese in the deep sea surface sediments in the Nansha Islands sea area, South China Sea are measured. Horizontal and vertical distributions of iron and manganese are discussed. The vertical distribution of iron and manganese in the sediments results from reduction, diffusion, and redeposition of manganese (or iron) oxide and hydroxide in the sediment. There are the maxima of iron and manganese in solid phase in the top of the sediment, which is caused by the penetration of O2 and the upward flux of Mn2+ ( or Fe2+ ). Manganese bacteria play a very important role in the cycle of solid-phase iron and manganese in the ocean environment. Manganese bacteria oxidize Mn2+ ( or Fe2+ ) in dissolved state to Mn4+ ( or Fe3+ ) in oxidized state under the aerobic condition, whereas they reduce iron and manganese in anaerobic conditions.展开更多
Based on seismic and drilling data, we calculated tectonic subsidence amounts and rates of the Wan'an Basin by backstripping. The genetic mechanism and syn-rifting process of the basin were analyzed in combination...Based on seismic and drilling data, we calculated tectonic subsidence amounts and rates of the Wan'an Basin by backstripping. The genetic mechanism and syn-rifting process of the basin were analyzed in combination with the regional geological setting. The results reveal that the basin syn-rifted in the Eocene and early Miocene under the control of the dextral strike-slip Wan'an Fault Zone. The transtensional/ extentional stresses along this fault zone may be attributed to seafloor spreading of the South China Sea (SCS) in multiple episodes. Extensive basal faults and some small initial rifts in the early Paleogene can be related to southeastward extrusion and clockwise rotation of the Indochina Block. During the Oligocene, the nearly N-S directed spreading of the SCS derived the transtensional stresses in a roughly NW-SE orientation. The basin subsided rapidly in the middle and north to form two major subsidence centers. In the early Miocene, the SCS spread again in a nearly NW-SE direction, resulting in rapid subsidence in the southern basin continuous extending until the period ~16.3 Ma.展开更多
Land use and land cover change(LUCC)is one of the important human forcing on climate.However,it is difficult to infer how LUCC will affect climate in the future from the effects of previous LUCC on regional climates i...Land use and land cover change(LUCC)is one of the important human forcing on climate.However,it is difficult to infer how LUCC will affect climate in the future from the effects of previous LUCC on regional climates in the past.Thus,based on the land cover data recommended by the Coupled Model Intercomparison Project Phase 5(CMIP5),a regional climate model(Reg CM4)was used to investigate the climate effects of future land use change over China.Two 15-year simulations(2036–2050),one with the current land use data and the other with future land cover scenario(2050)were conducted.It is noted that future LUCC in China is mainly characterized by the transition from the grassland to the forest.Results suggest that the magnitudes and ranges of the changes in temperature and precipitation caused by future LUCC show evident seasonality,which are more prominent in summer and autumn.Significant response of climate to future LUCC mainly happens in Northeast China,North China,the Hetao Area,Eastern Qinghai-Tibetan Plateau and South China.Further investigation shows that future LUCC can also produce significant impacts on the atmospheric circulation.LUCC results in abnormal southwesterly wind over extensive areas from the Indian peninsula to the coasts of the South China Sea and South China through the Bay of Bengal.Furthermore,Indian tropical southwest monsoons and South Sea southwest monsoons will both be strong,and the abnormal water vapor convergence from the South China Sea and the Indian Ocean will result in more precipitation in South China.展开更多
基金supported by the National Natural Science Foundation of China(contract No.49706065)the Special Foundation of National Social Common Wealth Research(contract No.2001DIA50041)ZKCX2-SW-212 by Chinese Academy of Science
文摘Concentrations of organic matter, iron and manganese in the deep sea surface sediments in the Nansha Islands sea area, South China Sea are measured. Horizontal and vertical distributions of iron and manganese are discussed. The vertical distribution of iron and manganese in the sediments results from reduction, diffusion, and redeposition of manganese (or iron) oxide and hydroxide in the sediment. There are the maxima of iron and manganese in solid phase in the top of the sediment, which is caused by the penetration of O2 and the upward flux of Mn2+ ( or Fe2+ ). Manganese bacteria play a very important role in the cycle of solid-phase iron and manganese in the ocean environment. Manganese bacteria oxidize Mn2+ ( or Fe2+ ) in dissolved state to Mn4+ ( or Fe3+ ) in oxidized state under the aerobic condition, whereas they reduce iron and manganese in anaerobic conditions.
基金Supported by the National Basic Research Program of China (973 Program) (No. 2009CB219406)the National Natural Science Foundation of China (No. 40930845)
文摘Based on seismic and drilling data, we calculated tectonic subsidence amounts and rates of the Wan'an Basin by backstripping. The genetic mechanism and syn-rifting process of the basin were analyzed in combination with the regional geological setting. The results reveal that the basin syn-rifted in the Eocene and early Miocene under the control of the dextral strike-slip Wan'an Fault Zone. The transtensional/ extentional stresses along this fault zone may be attributed to seafloor spreading of the South China Sea (SCS) in multiple episodes. Extensive basal faults and some small initial rifts in the early Paleogene can be related to southeastward extrusion and clockwise rotation of the Indochina Block. During the Oligocene, the nearly N-S directed spreading of the SCS derived the transtensional stresses in a roughly NW-SE orientation. The basin subsided rapidly in the middle and north to form two major subsidence centers. In the early Miocene, the SCS spread again in a nearly NW-SE direction, resulting in rapid subsidence in the southern basin continuous extending until the period ~16.3 Ma.
基金jointly supported by the National Natural Science Foundation of China(Grant Nos.41475083,41230422)the National Basic Research Program of China(Grant No.2011CB952000)the PriorityAcademic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Land use and land cover change(LUCC)is one of the important human forcing on climate.However,it is difficult to infer how LUCC will affect climate in the future from the effects of previous LUCC on regional climates in the past.Thus,based on the land cover data recommended by the Coupled Model Intercomparison Project Phase 5(CMIP5),a regional climate model(Reg CM4)was used to investigate the climate effects of future land use change over China.Two 15-year simulations(2036–2050),one with the current land use data and the other with future land cover scenario(2050)were conducted.It is noted that future LUCC in China is mainly characterized by the transition from the grassland to the forest.Results suggest that the magnitudes and ranges of the changes in temperature and precipitation caused by future LUCC show evident seasonality,which are more prominent in summer and autumn.Significant response of climate to future LUCC mainly happens in Northeast China,North China,the Hetao Area,Eastern Qinghai-Tibetan Plateau and South China.Further investigation shows that future LUCC can also produce significant impacts on the atmospheric circulation.LUCC results in abnormal southwesterly wind over extensive areas from the Indian peninsula to the coasts of the South China Sea and South China through the Bay of Bengal.Furthermore,Indian tropical southwest monsoons and South Sea southwest monsoons will both be strong,and the abnormal water vapor convergence from the South China Sea and the Indian Ocean will result in more precipitation in South China.