A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (P1) emis...A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (P1) emissions over East Asia to examine the aerosol indirect effect on clouds. As a result of an increase in aerosols in January, the cloud droplet number increased by 650 cm-3 over the ocean and East China, 400 cm-3 over Central and Southwest China, and less than 200 cm-3 over North China. The cloud liquid water path (LWP) increased by 40-60 g m-2 over the ocean and Southeast China and 30 g m-2 over Central China; the LWP in- creased less than 5 g m-2 or decreased by 5 g m2 over North China. The effective radius (Re) decreased by more than 4 pm over Southwest, Central, and Southeast China and 2 pm over North China. In July, variations in cloud properties were more uniform; the cloud droplet number increased by approximately 250400 cm-3, the LWP increased by approximately 30-50 g m 2, and Re decreased by approximately 3 μm over most regions of China. In response to cloud property changes from PI to PD, shortwave (SW) cloud radiative m-2 over the ocean and 10 forcing strengthened by 30 W W m-2 over Southeast China, and it weakened slightly by approximately 2-10 W m-2 over Central and Southwest China in January. In July, SW cloud radiative forcing strengthened by 15 W m-2 over Southeast and North China and weakened by l0 W m-2 over Central China. The different responses of SW cloud radiative forcing in different regions was related to cloud feedbacks and natural variability.展开更多
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-Q11-04)the "Strategic Priority Research Program" of the Chinese Academy of Sciences (XDA05100502)
文摘A coupled meteorology and aerosol/chemistry model WRF-Chem (Weather Research and Forecast model coupled with Chemistry) was used to conduct a pair of simulations with present-day (PD) and preindustrial (P1) emissions over East Asia to examine the aerosol indirect effect on clouds. As a result of an increase in aerosols in January, the cloud droplet number increased by 650 cm-3 over the ocean and East China, 400 cm-3 over Central and Southwest China, and less than 200 cm-3 over North China. The cloud liquid water path (LWP) increased by 40-60 g m-2 over the ocean and Southeast China and 30 g m-2 over Central China; the LWP in- creased less than 5 g m-2 or decreased by 5 g m2 over North China. The effective radius (Re) decreased by more than 4 pm over Southwest, Central, and Southeast China and 2 pm over North China. In July, variations in cloud properties were more uniform; the cloud droplet number increased by approximately 250400 cm-3, the LWP increased by approximately 30-50 g m 2, and Re decreased by approximately 3 μm over most regions of China. In response to cloud property changes from PI to PD, shortwave (SW) cloud radiative m-2 over the ocean and 10 forcing strengthened by 30 W W m-2 over Southeast China, and it weakened slightly by approximately 2-10 W m-2 over Central and Southwest China in January. In July, SW cloud radiative forcing strengthened by 15 W m-2 over Southeast and North China and weakened by l0 W m-2 over Central China. The different responses of SW cloud radiative forcing in different regions was related to cloud feedbacks and natural variability.