Energetic near-inertial internal waves (NlWs) were observed on the continental slope of the northern South China Sea in September 2008. Characteristics of the observed near-inertial waves were examined based on curr...Energetic near-inertial internal waves (NlWs) were observed on the continental slope of the northern South China Sea in September 2008. Characteristics of the observed near-inertial waves were examined based on current data recorded by a moored acoustic Doppler current profiler. Results of a simple slab model indicated that the NIWs were generated by the surface winds of Typhoon Hagupit. Following Hagupit's passage, the wave field was dominated by baroclinic NIWs. The near-inertial currents were surface-intensified with a maximum of 0.52 m/s but still reached 0.1 m/s at the depth of 210 m. Moreover, the near-inertial currents were clockwise-polarized and slightly elliptical. A depth-leading phase of the near- inertial currents was evident, which indicated downward energy propagation. However, the rotary vertical wavenumber spectra suggested that upward energy propagation also existed, which was consistent previous theoretical study. The frequency of the NIWs, modified by the positive background vorticity, was 0.714 2 cycles per day, which was 0.02f0 higher than the local inertial frequency (f0). The near-inertial kinetic energy evolved exponentially and had an e-folding timescale of about 3 days. The vertical phase and group velocity were estimated to be 10 and 2.1 m/h, respectively, corresponding to a vertical wavelength of 340 m. The NlWs were dominated by the second mode with a variance contribution of 〉50%, followed by the third mode, while the first mode was insignificant.展开更多
The sea surface height oscillation with a quasi-four-month period (SSHO4) along continental slope in the northern South China Sea (NSCS) is detected using satellite altimeter data and an ocean model simulation. Th...The sea surface height oscillation with a quasi-four-month period (SSHO4) along continental slope in the northern South China Sea (NSCS) is detected using satellite altimeter data and an ocean model simulation. The SSHO4 is at southwest of Dongsha Island, and is characterized by a wavelength of-600 km and a southwestward phase speed of-0.1 m/s. Crossing the climatological background SST front, geostrophic currents corresponding to the SSHO4 generally induce sea surface temperature (SST) "tongues" during January-March. The cold and warm SST tongues appear southwest of cyclonic and anticyclonic eddies, respectively. The distance between the warm and cold SST tongues is about half the wavelength of the SSHO4. The geostrophic currents play an important role in lateral mixing, as manifested by the SST tongue phenomena in the NSCS.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.U1133001,41030855,and 41376027)the National High Technology Research and Development Program of China(863 Program)(No.2013AA09A502)the NSFC-Shandong Joint Fund for Marine Science Research Centers(No.U1406401)
文摘Energetic near-inertial internal waves (NlWs) were observed on the continental slope of the northern South China Sea in September 2008. Characteristics of the observed near-inertial waves were examined based on current data recorded by a moored acoustic Doppler current profiler. Results of a simple slab model indicated that the NIWs were generated by the surface winds of Typhoon Hagupit. Following Hagupit's passage, the wave field was dominated by baroclinic NIWs. The near-inertial currents were surface-intensified with a maximum of 0.52 m/s but still reached 0.1 m/s at the depth of 210 m. Moreover, the near-inertial currents were clockwise-polarized and slightly elliptical. A depth-leading phase of the near- inertial currents was evident, which indicated downward energy propagation. However, the rotary vertical wavenumber spectra suggested that upward energy propagation also existed, which was consistent previous theoretical study. The frequency of the NIWs, modified by the positive background vorticity, was 0.714 2 cycles per day, which was 0.02f0 higher than the local inertial frequency (f0). The near-inertial kinetic energy evolved exponentially and had an e-folding timescale of about 3 days. The vertical phase and group velocity were estimated to be 10 and 2.1 m/h, respectively, corresponding to a vertical wavelength of 340 m. The NlWs were dominated by the second mode with a variance contribution of 〉50%, followed by the third mode, while the first mode was insignificant.
基金Supported by the Ministry of Science and Technology of China(National Basic Research Program of China(No.2012CB955602))the National Key Program for Developing Basic Science(No.2010CB428904)+1 种基金the National Natural Science Foundation of China(No.40830106)a China Postdoctoral Science Foundation Funded Project(No.20100471573)
文摘The sea surface height oscillation with a quasi-four-month period (SSHO4) along continental slope in the northern South China Sea (NSCS) is detected using satellite altimeter data and an ocean model simulation. The SSHO4 is at southwest of Dongsha Island, and is characterized by a wavelength of-600 km and a southwestward phase speed of-0.1 m/s. Crossing the climatological background SST front, geostrophic currents corresponding to the SSHO4 generally induce sea surface temperature (SST) "tongues" during January-March. The cold and warm SST tongues appear southwest of cyclonic and anticyclonic eddies, respectively. The distance between the warm and cold SST tongues is about half the wavelength of the SSHO4. The geostrophic currents play an important role in lateral mixing, as manifested by the SST tongue phenomena in the NSCS.