A 600-year pre-industrial simulation with Bergen Climate Model(BCM)Version 2 is used to investigate the linkage between winter Arctic Oscillation(AO)and the Southeast Asian summer monsoon(SEASM)on the inter-decadal ti...A 600-year pre-industrial simulation with Bergen Climate Model(BCM)Version 2 is used to investigate the linkage between winter Arctic Oscillation(AO)and the Southeast Asian summer monsoon(SEASM)on the inter-decadal timescale.The results indicate an in-phase relationship between the AO and SEASM with periods of approximately 16–32 and 60–80 years.During the positive phase of winter AO,an anomalous surface anti-cyclonic atmosphere circulation appears over North Pacific in winter.The corresponding anomalies in ocean circulation and surface heat flux,particularly the latent and sensible heat flux,resemble a negative Pacific Decadal Oscillation(PDO)-like sea surface temperature(SST)pattern.The AO-associated PDO-like winter SST can persist into summer and can therefore lead to inter-decadal variability of summer monsoon rainfall in East and Southeast Asia.展开更多
Previous studies have revealed a connection between springtime sea surface temperature (SST) in the tropical northern Atlantic (TNA) and the succeeding wintertime El Nino-Southern Oscillation (ENSO). The present...Previous studies have revealed a connection between springtime sea surface temperature (SST) in the tropical northern Atlantic (TNA) and the succeeding wintertime El Nino-Southern Oscillation (ENSO). The present analysis demonstrates that the linkage between springtime TNA SST and the following ENSO experiences an obvious interdecadal change around the early 1980s, with the connection being weak before but significant after. After the early 1980s, springtime positive TNA SST anomalies induce an anomalous cyclone over the northeastern subtropical Pacific and an anomalous Walker circulation with a descending branch over the tropical central-eastern Pacific. This leads to anomalous cold SST in the northeastern Pacific and an anomalous anticyclone over the western-central tropical Pacific, with anomalous easterlies to the equatorward side. As such, springtime TNA SST anomalies are followed by wintertime ENSO after the early 1980s. In contrast, before the early 1980s, anomalous cold SST in the northeastern Pacific and related anomalous easterlies over the western-central tropical Pacific are weak, corresponding to springtime positive TNA SST anomalies and resulting in a weak linkage between springtimeTNA SST and the succeeding wintertime ENSO. Further investigation implies that the change in the TNA SST-ENSO relationship is probably due to a change in springtime mean precipitation over the tropical Atlantic and South America.展开更多
In this study,the relationship between the North Atlantic Oscillation (NAO) in winter (DecemberFebruary) and the precipitation over southem China (SCP) in the following spring (March-May) was investigated.Resu...In this study,the relationship between the North Atlantic Oscillation (NAO) in winter (DecemberFebruary) and the precipitation over southem China (SCP) in the following spring (March-May) was investigated.Results showed an interdecadal change,from strong to weak connection,in their connection.Before the early 1980s,they were highly correlated,with a strong (weak) winter NAO followed by an increased (decreased) spring SCP.However,after the early 1980s,their relationship was weakened significantly.This unstable relationship may be linked to the climatological change of East Asian jet.Before the early 1980s,the wave train along the Asian jet propagated the NAO signal eastward to East Asia and affected local upper-tropospheric atmospheric circulation.A strong NAO in winter led to an anomalous anticyclonic circulation at the south side of 30°N in East Asia in spring,resulting in an increase of SCP.In contrast,after the early 1980s,the wave train pattern along the Asian jet extended eastward due to strengthening of the climatological East Asian jet.Correspondingly,the NAO-related East Asian atmospheric circulations in the upper troposphere shifted eastward,thereby weakening the linkage between the spring SCP and the winter NAO.展开更多
基金supported by the National Basic Research Program of China(Grant No.2012CB955401)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05110203)the Center for Climate Dynamics(Project:Integrated Model-data Approach for Understanding Multidecadal Natural Climate Variability)
文摘A 600-year pre-industrial simulation with Bergen Climate Model(BCM)Version 2 is used to investigate the linkage between winter Arctic Oscillation(AO)and the Southeast Asian summer monsoon(SEASM)on the inter-decadal timescale.The results indicate an in-phase relationship between the AO and SEASM with periods of approximately 16–32 and 60–80 years.During the positive phase of winter AO,an anomalous surface anti-cyclonic atmosphere circulation appears over North Pacific in winter.The corresponding anomalies in ocean circulation and surface heat flux,particularly the latent and sensible heat flux,resemble a negative Pacific Decadal Oscillation(PDO)-like sea surface temperature(SST)pattern.The AO-associated PDO-like winter SST can persist into summer and can therefore lead to inter-decadal variability of summer monsoon rainfall in East and Southeast Asia.
基金supported by the National Natural Science Foundation of China[grant numbers 41530425 and 41605050]the China Postdoctoral Science Foundation[grant number2015M581151]
文摘Previous studies have revealed a connection between springtime sea surface temperature (SST) in the tropical northern Atlantic (TNA) and the succeeding wintertime El Nino-Southern Oscillation (ENSO). The present analysis demonstrates that the linkage between springtime TNA SST and the following ENSO experiences an obvious interdecadal change around the early 1980s, with the connection being weak before but significant after. After the early 1980s, springtime positive TNA SST anomalies induce an anomalous cyclone over the northeastern subtropical Pacific and an anomalous Walker circulation with a descending branch over the tropical central-eastern Pacific. This leads to anomalous cold SST in the northeastern Pacific and an anomalous anticyclone over the western-central tropical Pacific, with anomalous easterlies to the equatorward side. As such, springtime TNA SST anomalies are followed by wintertime ENSO after the early 1980s. In contrast, before the early 1980s, anomalous cold SST in the northeastern Pacific and related anomalous easterlies over the western-central tropical Pacific are weak, corresponding to springtime positive TNA SST anomalies and resulting in a weak linkage between springtimeTNA SST and the succeeding wintertime ENSO. Further investigation implies that the change in the TNA SST-ENSO relationship is probably due to a change in springtime mean precipitation over the tropical Atlantic and South America.
基金supported by the Special Fund for Public Welfare Industry (Meteorology) (GYHY201306026)the National Natural Science Foundation of China (41275078)the National Basic Research Program of China (2009CB421407)
文摘In this study,the relationship between the North Atlantic Oscillation (NAO) in winter (DecemberFebruary) and the precipitation over southem China (SCP) in the following spring (March-May) was investigated.Results showed an interdecadal change,from strong to weak connection,in their connection.Before the early 1980s,they were highly correlated,with a strong (weak) winter NAO followed by an increased (decreased) spring SCP.However,after the early 1980s,their relationship was weakened significantly.This unstable relationship may be linked to the climatological change of East Asian jet.Before the early 1980s,the wave train along the Asian jet propagated the NAO signal eastward to East Asia and affected local upper-tropospheric atmospheric circulation.A strong NAO in winter led to an anomalous anticyclonic circulation at the south side of 30°N in East Asia in spring,resulting in an increase of SCP.In contrast,after the early 1980s,the wave train pattern along the Asian jet extended eastward due to strengthening of the climatological East Asian jet.Correspondingly,the NAO-related East Asian atmospheric circulations in the upper troposphere shifted eastward,thereby weakening the linkage between the spring SCP and the winter NAO.