A continuous three-year observation(from May 2008 to April 2011)was conducted to characterize the spatial variation of dissolved inorganic nitrogen(DIN)deposition at eight main forest ecosystems along the north-south ...A continuous three-year observation(from May 2008 to April 2011)was conducted to characterize the spatial variation of dissolved inorganic nitrogen(DIN)deposition at eight main forest ecosystems along the north-south transect of eastern China(NSTEC).The results show that both throughfall DIN deposition and bulk DIN deposition increase from north to south along the NSTEC.Throughfall DIN deposition varies greatly from 2.7 kg N/(ha·yr)to 33.0 kg N/(ha·yr),with an average of 10.6 kg N/(ha·yr),and bulk DIN deposition ranges from 4.1 kg N/(ha·yr)to 25.4 kg N/(ha·yr),with an average of 9.8 kg N/(ha·yr).NH4+-N is the dominant form of DIN deposition at most sampling sites.Additionally,the spatial variation of DIN deposition is controlled mainly by precipitation.Moreover,in the northern part of the NSTEC,bulk DIN deposition is 17%higher than throughfall DIN deposition,whereas the trend is opposite in the southern part of the NSTEC.The results demonstrate that DIN deposition would likely threaten the forest ecosystems along the NSTEC,compared with the critical loads(CL)of N deposition,and DIN deposition in this region is mostly controlled by agricultural activities rather than industrial activities or transportation.展开更多
This paper presents a new method for the system identification of the channel roughness for the water diversion projects. According to the principle of hydraulics,the function relationship among channel roughness n, r...This paper presents a new method for the system identification of the channel roughness for the water diversion projects. According to the principle of hydraulics,the function relationship among channel roughness n, roughness height k s and hydraulic radius R is established,and then a linear model is deduced by means of the mathematical transformation to make use of the least square method for identification. Finally,based on the prototype observation data from the South-to-North Water Diversion Project and considering the influence of channel lengths,cross-section shapes and bottom slopes,etc,a universal formula is obtained for calculation of channel roughness by the system identification.展开更多
The variations of the marine atmospheric boundary layer (MABL) associated with the South China Sea Summer Monsoon were examined using the Global Positioning System (GPS) sounding datasets obtained four times daily dur...The variations of the marine atmospheric boundary layer (MABL) associated with the South China Sea Summer Monsoon were examined using the Global Positioning System (GPS) sounding datasets obtained four times daily during May-June 1998 on board Research Vessels Kexue 1 and Shiyan 3. The MABL height is defined as the height at the lowest level where virtual potential temperature increases by 1 K from the surface. The results indicate that the MABL height decreased over the northern South China Sea (SCS) and remained the same over the southern SCS, as sea surface temperature (SST) fell for the northern and rose for the southern SCS after the monsoon onset. Over the northern SCS, a decrease in both the SST and the surface latent-heat flux after the onset resulted in a reduction of the MABL height as well as a decoupling of MABL from clouds. It was found that MABL height reduction corresponded to rainfall occurrence. Over the southern SCS, a probable reason for the constant increase of SST and surface heat flux was the rainfall and internal atmospheric dynamics.展开更多
A recent study conducted on the four activated systems serving the surrounding communities in the Northern Gauteng revealed the failure of three of these wastewater treatment plants to remove enteric pathogenic bacter...A recent study conducted on the four activated systems serving the surrounding communities in the Northern Gauteng revealed the failure of three of these wastewater treatment plants to remove enteric pathogenic bacteria and protozoan parasites such as Cryptosporidium and Giardia spp. To determine the factors involved in the inadequate performance of the plants, the following parameters were considered: the design characteristic of the plants, the microbiological structure and the physical characteristics of the plants. The results revealed that higher than optimal influent loadings and inadequate aeration systems, observed in Baviaanspoort, Refilwe and Rayton Water Care Works (WCW) increased the composition of filamentous bacteria in flocs and decreased the diversity of protozoan species in the sludge. Sequentially, these resulted in the poor settling properties of the sludge at these plants. However, Zeekoegat WCW showed optimum influent loads and adequate aeration systems. This maintained balance in the microbial community, resulting in good clarification of the sludge.展开更多
Based on an integrated analysis of high-resolution 2D/3D seismic data and drilling results, this study analyzes the tectonic- sedimentary evolution of the Qiongdongnan Basin (QDNB) since the late Miocene, and discus...Based on an integrated analysis of high-resolution 2D/3D seismic data and drilling results, this study analyzes the tectonic- sedimentary evolution of the Qiongdongnan Basin (QDNB) since the late Miocene, and discusses the controlling factors on the formation and development of the Central Canyon System (CCS). The sediment failures caused by the relative sea level falling might have discharged deposits from the slope to the canyon. The two suits of the infillings, i.e., turbidites and mass transport complex (MTC), were derived from the northwestern source and northern source, respectively. The sediment supplies, which differ significantly among different areas, might have led to the variations observed in the internal architectures. Tectonic transformation around 11.6 Ma had provided the tectonic setting for the CCS and formed an axial sub-basin in the central part of the Changchang Depression, which could be called the rudiment of the CCS. The tectonic activity of the Red River Fault (RRF) at about 5.7 Ma might have strengthened the hydrodynamics of the deposits at the junction of the Yinggehal Basin (YGHB) and the QDNB to trigger a high-energy turbidity current. The MTC from the northern continental slope system might have been constrained by the Southern Uplift, functioning as a barrier for the infillings of the CCS. Thanks to a sufficient sediment supply during the Holocene period and the paleo-seafloor morphology, the relief of modern central canyon with the starving landform in the eastern Changchang Depression might have been accentuated by deposition of sediments and vertical growth along the canyon flanks, where collapse deposits were widely developed. Corresponding to the segmentation of the CCS, the forming mechanisms of the canyon between the three segments would be different. The turbidite channel in the head area had likely been triggered by the abundant sediment supply from the northwestern source together with the fault activity at about 5.7 Ma of the RRF. The formation and evolution of the canyon in the western segment were caused by combined effects of the turbidite channel from the northwestern source, the MTC from the northern continental slope, and the paleo-seafloor geomorphology. In the eastern segment, the canyon was constrained by the tectonic transformation occurring at approximately 11.6 Ma and the insufficient sediment supply from the wide-gentle slope.展开更多
The operation of reservoir(s) has a certain impact on the downstream hydrologic regime,and even endangers the ecological water safety of river corridor and ecosystems which interact with river system.Therefore,ecologi...The operation of reservoir(s) has a certain impact on the downstream hydrologic regime,and even endangers the ecological water safety of river corridor and ecosystems which interact with river system.Therefore,ecological operation needs to be carried out in order to ensure ecological water use of downstream zone.The key technological support is the estimation and integrated calculation of ecological water demand.The connotation of the integrated calculation on ecological water demand lies on that the ecological water demand of different ecosystems is integrated to meet the requirements of water allocation and operation on watershed scale in terms of hydrological cycle.Considering the practical requirement of ecological operation of reservoir(s),this study proposed an integrated calculation approach of ecological water demand according to the ecological water demand in various ecosystems as well as the hydraulic connection among them;it established an integrated calculation model of regional ecological water demand by means of the distributed hydrological model,and studied the integrated calculation in Yalong River basin which is the source area of the west route of South-North Water Transfer Project as an example.The results indicated that the integrated calculation model more effectively combined the ecological water demand and hydraulic connection of ecosystems in time and space,compared with the lumped water balance analysis,since the former conquered the defect of insufficient ecological water source and supplement on multiple spatial and temporal scales,and met the demand of ecological operation of reservoir(s).展开更多
A concept of space-surface bistatic synthetic aperture radar (SS-BSAR) passive imaging system is proposed,which is parasitic on the signal of COMPASS Navigation Satellite System (CNSS).The feasibility is demonstrated ...A concept of space-surface bistatic synthetic aperture radar (SS-BSAR) passive imaging system is proposed,which is parasitic on the signal of COMPASS Navigation Satellite System (CNSS).The feasibility is demonstrated by analyzing the signal ambiguity function and the range resolution as well as the system topology.Due to the multiple peaks of signal in the auto-correlation function,a new correlation is used to remove the side-peaks.A double-channel receiver is employed to receive the direct satellite signal and the ground reflected signal.The direct signal is a reference signal in range compression,and may also be used for transmitter-receiver signal synchronization.The reflected signal is raw data collected for imaging.Then,a modified range-Doppler imaging algorithm is derived based on the system geometric models and BSAR imaging principle.The proposed algorithm is verified via signal simulation.The work in this paper is of great value to the further use of COMPASS signal,as well as other global navigation satellite signals in passive imaging.展开更多
基金Under the auspices of Major State Basic Research Development Program of China(No.2010CB833504)Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05050601)
文摘A continuous three-year observation(from May 2008 to April 2011)was conducted to characterize the spatial variation of dissolved inorganic nitrogen(DIN)deposition at eight main forest ecosystems along the north-south transect of eastern China(NSTEC).The results show that both throughfall DIN deposition and bulk DIN deposition increase from north to south along the NSTEC.Throughfall DIN deposition varies greatly from 2.7 kg N/(ha·yr)to 33.0 kg N/(ha·yr),with an average of 10.6 kg N/(ha·yr),and bulk DIN deposition ranges from 4.1 kg N/(ha·yr)to 25.4 kg N/(ha·yr),with an average of 9.8 kg N/(ha·yr).NH4+-N is the dominant form of DIN deposition at most sampling sites.Additionally,the spatial variation of DIN deposition is controlled mainly by precipitation.Moreover,in the northern part of the NSTEC,bulk DIN deposition is 17%higher than throughfall DIN deposition,whereas the trend is opposite in the southern part of the NSTEC.The results demonstrate that DIN deposition would likely threaten the forest ecosystems along the NSTEC,compared with the critical loads(CL)of N deposition,and DIN deposition in this region is mostly controlled by agricultural activities rather than industrial activities or transportation.
基金Expert Comittee Key Special Found Project of State Council South-to-North Water Diversion Construction Committee(No.JGZXSY2009-11)
文摘This paper presents a new method for the system identification of the channel roughness for the water diversion projects. According to the principle of hydraulics,the function relationship among channel roughness n, roughness height k s and hydraulic radius R is established,and then a linear model is deduced by means of the mathematical transformation to make use of the least square method for identification. Finally,based on the prototype observation data from the South-to-North Water Diversion Project and considering the influence of channel lengths,cross-section shapes and bottom slopes,etc,a universal formula is obtained for calculation of channel roughness by the system identification.
基金supported by the Chinese Academy of Sciences (Grant No. KZCX1-YW-12-01)the National Natural Science Foundation of China (Grant Nos. U0733002 and 40876009)The National Basic Research Program of China (Grant No. 2011CB403504)
文摘The variations of the marine atmospheric boundary layer (MABL) associated with the South China Sea Summer Monsoon were examined using the Global Positioning System (GPS) sounding datasets obtained four times daily during May-June 1998 on board Research Vessels Kexue 1 and Shiyan 3. The MABL height is defined as the height at the lowest level where virtual potential temperature increases by 1 K from the surface. The results indicate that the MABL height decreased over the northern South China Sea (SCS) and remained the same over the southern SCS, as sea surface temperature (SST) fell for the northern and rose for the southern SCS after the monsoon onset. Over the northern SCS, a decrease in both the SST and the surface latent-heat flux after the onset resulted in a reduction of the MABL height as well as a decoupling of MABL from clouds. It was found that MABL height reduction corresponded to rainfall occurrence. Over the southern SCS, a probable reason for the constant increase of SST and surface heat flux was the rainfall and internal atmospheric dynamics.
文摘A recent study conducted on the four activated systems serving the surrounding communities in the Northern Gauteng revealed the failure of three of these wastewater treatment plants to remove enteric pathogenic bacteria and protozoan parasites such as Cryptosporidium and Giardia spp. To determine the factors involved in the inadequate performance of the plants, the following parameters were considered: the design characteristic of the plants, the microbiological structure and the physical characteristics of the plants. The results revealed that higher than optimal influent loadings and inadequate aeration systems, observed in Baviaanspoort, Refilwe and Rayton Water Care Works (WCW) increased the composition of filamentous bacteria in flocs and decreased the diversity of protozoan species in the sludge. Sequentially, these resulted in the poor settling properties of the sludge at these plants. However, Zeekoegat WCW showed optimum influent loads and adequate aeration systems. This maintained balance in the microbial community, resulting in good clarification of the sludge.
基金supported by the Major Research Plan of the National Natural Science Foundation of China(Grant No.91028009)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.41002031)the Foundation of State Key Laboratory of Petroleum Resource and Prospecting,China University of Petroleum(Grant No.PRP/open-1205)
文摘Based on an integrated analysis of high-resolution 2D/3D seismic data and drilling results, this study analyzes the tectonic- sedimentary evolution of the Qiongdongnan Basin (QDNB) since the late Miocene, and discusses the controlling factors on the formation and development of the Central Canyon System (CCS). The sediment failures caused by the relative sea level falling might have discharged deposits from the slope to the canyon. The two suits of the infillings, i.e., turbidites and mass transport complex (MTC), were derived from the northwestern source and northern source, respectively. The sediment supplies, which differ significantly among different areas, might have led to the variations observed in the internal architectures. Tectonic transformation around 11.6 Ma had provided the tectonic setting for the CCS and formed an axial sub-basin in the central part of the Changchang Depression, which could be called the rudiment of the CCS. The tectonic activity of the Red River Fault (RRF) at about 5.7 Ma might have strengthened the hydrodynamics of the deposits at the junction of the Yinggehal Basin (YGHB) and the QDNB to trigger a high-energy turbidity current. The MTC from the northern continental slope system might have been constrained by the Southern Uplift, functioning as a barrier for the infillings of the CCS. Thanks to a sufficient sediment supply during the Holocene period and the paleo-seafloor morphology, the relief of modern central canyon with the starving landform in the eastern Changchang Depression might have been accentuated by deposition of sediments and vertical growth along the canyon flanks, where collapse deposits were widely developed. Corresponding to the segmentation of the CCS, the forming mechanisms of the canyon between the three segments would be different. The turbidite channel in the head area had likely been triggered by the abundant sediment supply from the northwestern source together with the fault activity at about 5.7 Ma of the RRF. The formation and evolution of the canyon in the western segment were caused by combined effects of the turbidite channel from the northwestern source, the MTC from the northern continental slope, and the paleo-seafloor geomorphology. In the eastern segment, the canyon was constrained by the tectonic transformation occurring at approximately 11.6 Ma and the insufficient sediment supply from the wide-gentle slope.
基金supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51021066)the State Key Development Program for Basic Research of China (Grant No. 2010CB951102)
文摘The operation of reservoir(s) has a certain impact on the downstream hydrologic regime,and even endangers the ecological water safety of river corridor and ecosystems which interact with river system.Therefore,ecological operation needs to be carried out in order to ensure ecological water use of downstream zone.The key technological support is the estimation and integrated calculation of ecological water demand.The connotation of the integrated calculation on ecological water demand lies on that the ecological water demand of different ecosystems is integrated to meet the requirements of water allocation and operation on watershed scale in terms of hydrological cycle.Considering the practical requirement of ecological operation of reservoir(s),this study proposed an integrated calculation approach of ecological water demand according to the ecological water demand in various ecosystems as well as the hydraulic connection among them;it established an integrated calculation model of regional ecological water demand by means of the distributed hydrological model,and studied the integrated calculation in Yalong River basin which is the source area of the west route of South-North Water Transfer Project as an example.The results indicated that the integrated calculation model more effectively combined the ecological water demand and hydraulic connection of ecosystems in time and space,compared with the lumped water balance analysis,since the former conquered the defect of insufficient ecological water source and supplement on multiple spatial and temporal scales,and met the demand of ecological operation of reservoir(s).
基金supported by the National Basic Research Program of China (Grant No.2011CB707001)
文摘A concept of space-surface bistatic synthetic aperture radar (SS-BSAR) passive imaging system is proposed,which is parasitic on the signal of COMPASS Navigation Satellite System (CNSS).The feasibility is demonstrated by analyzing the signal ambiguity function and the range resolution as well as the system topology.Due to the multiple peaks of signal in the auto-correlation function,a new correlation is used to remove the side-peaks.A double-channel receiver is employed to receive the direct satellite signal and the ground reflected signal.The direct signal is a reference signal in range compression,and may also be used for transmitter-receiver signal synchronization.The reflected signal is raw data collected for imaging.Then,a modified range-Doppler imaging algorithm is derived based on the system geometric models and BSAR imaging principle.The proposed algorithm is verified via signal simulation.The work in this paper is of great value to the further use of COMPASS signal,as well as other global navigation satellite signals in passive imaging.