Regular and irregular observational data are used to analyze and simulate a torrential rain over the south of China on 18 - 24 June 2005. Since the regular data cannot depict the rainfall system fully, GRAPES model is...Regular and irregular observational data are used to analyze and simulate a torrential rain over the south of China on 18 - 24 June 2005. Since the regular data cannot depict the rainfall system fully, GRAPES model is used to simulate this process. Different data are assimilated for 12 hours by its simulating system and different analysis data are obtained. In order to analyze how well the model forecast has been improved with the addition of assimilated aircraft data, these different analysis data are used as the first-guess data to conduct two control numerical simulation tests. From these tests, it is proved that be model that adds aircraft assimilation data can simulate the main region of precipitation, which is more consistent with the observed precipitation than the model that does not, and that the accuracy rate is also improved. These numerical simulation tests not only show that it is necessary and capable to improve the modeling of this torrential rain process by using aircraft data, but also lays the foundation for forecasting heavy rains in the south of China based on aircraft data.展开更多
Spatial and temporal distribution characteristics and scale range of two significant areas were obtained by analyzing the relationship among summer rainfall in Yunnan province, height field and SST field (40°S –...Spatial and temporal distribution characteristics and scale range of two significant areas were obtained by analyzing the relationship among summer rainfall in Yunnan province, height field and SST field (40°S – 40°N, 30 °E – 70°W) across the North Hemisphere at 200 hPa, 500 hPa and 850 hPa for Jan. to May and correlation, and field wave structure. Remote key regions among summer rainfall in Yunnan province, height field and SST field (40°S – 40°N, 30°E – 70°W) across the North Hemisphere at 200 hPa, 500 hPa and 850 hPa were studied through further analyzing of the circulation system and its climate / weather significance. The result shows that the forecast has dependable physical basis when height and SST fields were viewed as predictors and physical models of impacts on rainy season precipitation in Yunnan are preliminarily concluded.展开更多
基金Techniques for Monitoring and Pre-warning Lightening for Pearl River Delta Cities, a socialwelfare project of the Ministry of Science and Technology (2005 DIB3J110)Mesoscale Observation,Experiments and Research on Heavy Rains in Southern China (2004CB418307)Research on the Techniques forTropical Assimilation Based on Modern Measurement Techniques
文摘Regular and irregular observational data are used to analyze and simulate a torrential rain over the south of China on 18 - 24 June 2005. Since the regular data cannot depict the rainfall system fully, GRAPES model is used to simulate this process. Different data are assimilated for 12 hours by its simulating system and different analysis data are obtained. In order to analyze how well the model forecast has been improved with the addition of assimilated aircraft data, these different analysis data are used as the first-guess data to conduct two control numerical simulation tests. From these tests, it is proved that be model that adds aircraft assimilation data can simulate the main region of precipitation, which is more consistent with the observed precipitation than the model that does not, and that the accuracy rate is also improved. These numerical simulation tests not only show that it is necessary and capable to improve the modeling of this torrential rain process by using aircraft data, but also lays the foundation for forecasting heavy rains in the south of China based on aircraft data.
基金Key Foundation Project of Yunnan Province (2003D0014Z)Natural Science Foundation ofChina (40065001)
文摘Spatial and temporal distribution characteristics and scale range of two significant areas were obtained by analyzing the relationship among summer rainfall in Yunnan province, height field and SST field (40°S – 40°N, 30 °E – 70°W) across the North Hemisphere at 200 hPa, 500 hPa and 850 hPa for Jan. to May and correlation, and field wave structure. Remote key regions among summer rainfall in Yunnan province, height field and SST field (40°S – 40°N, 30°E – 70°W) across the North Hemisphere at 200 hPa, 500 hPa and 850 hPa were studied through further analyzing of the circulation system and its climate / weather significance. The result shows that the forecast has dependable physical basis when height and SST fields were viewed as predictors and physical models of impacts on rainy season precipitation in Yunnan are preliminarily concluded.