We present zircon ages and geochemical data for the Hongshishan Carboniferous Alaskan-type mafic–ultramafic complex exposed in the Beishan area along the Sino–Mongolian boundary, southern margin of the Central Asian...We present zircon ages and geochemical data for the Hongshishan Carboniferous Alaskan-type mafic–ultramafic complex exposed in the Beishan area along the Sino–Mongolian boundary, southern margin of the Central Asian Orogenic Belt. This complex mainly consists of dunite,harzburgite, lherzolite, wehrlite, and gabbro, which intrudes Early Carboniferous volcanic rocks and reveals a zoned structure. Zircons of a gabbro sample yielded a 206Pb/238 U age of 357 ± 4 Ma, reflecting the time of Early Carboniferous magmatism. Zircon ages were also obtained for an andesite(322 ± 3 Ma) and a basaltic andesite(304 ± 2 Ma).High initial Nd isotope whole-rock values suggest that the Hongshishan gabbro [e_(Nd(t))= +9.6-+10.2] and basalt[eNd(t)= +10.0-+10.8] were derived from a depleted mantle source. Slightly lower eNd(t)values for the ultramafic rocks [eNd(t)= +8.5-+8.7] suggest some interaction of the parental magma with the continental crust. In contrast, the Late Carboniferous Quershan samples in this area represent subduction-related arc volcanic rocks with Adakite-like compositions. The early Carboniferous Hongshishan Alaskan-type complex was interpreted to represent the remnants of a magma chamber that crystallized at the base of a mature island arc, whereas the Quershan island arc volcanic rockssuggest the resurrection of the subduction process after arccontinent collision and uplift of the roots of the arc.展开更多
Rock burst is one of the most catastrophic dynamic hazards in coal mining. A static and dynamic stresses superposition-based(SDSS-based) risk evaluation method of rock burst was proposed to pre-evaluate rock burst ris...Rock burst is one of the most catastrophic dynamic hazards in coal mining. A static and dynamic stresses superposition-based(SDSS-based) risk evaluation method of rock burst was proposed to pre-evaluate rock burst risk. Theoretical basis of this method is the stress criterion incurring rock burst and rock burst risk is evaluated according to the closeness degree of the total stress(due to the superposition of static stress in the coal and dynamic stress induced by tremors) with the critical stress. In addition, risk evaluation criterion of rock burst was established by defining the "Satisfaction Degree" of static stress. Furthermore,the method was used to pre-evaluate rock burst risk degree and prejudge endangered area of an insular longwall face in Nanshan Coal Mine in China. Results show that rock burst risk is moderate at advance extent of 97 m, strong at advance extent of 97-131 m,and extremely strong(i.e. inevitable to occur) when advance extent exceeds 131 m(mining is prohibited in this case). The section of two gateways whose floor abuts 15-3 coal seam is a susceptible area prone to rock burst. Evaluation results were further compared with rock bursts and tremors detected by microseismic monitoring. Comparison results indicate that evaluation results are consistent with microseismic monitoring, which proves the method's feasibility.展开更多
Eclogites and omphacite-bearing blueschists have been newly found in the eastern segment of the southwest Tianshan orogenic belt, Xinjiang, northwest China. After detailed petrological study, three samples including o...Eclogites and omphacite-bearing blueschists have been newly found in the eastern segment of the southwest Tianshan orogenic belt, Xinjiang, northwest China. After detailed petrological study, three samples including one fresh eclogite TK003, one blueschist sample TK026-8 and one retrograded eclogite TK027, were selected for phase equilibrium modeling under NC(K)MnFMASHO (N20-CaO-K20-MnO-FeO-MgO-A1203-SiO2-H:O-O) system, by thermocalc 3.33 software. Composition analyses of garnets in these three samples show typical growth zoning with Xpy and Xgrs increasing, Xspss decreasing from core to rim. Pseudosection modeling of the garnet zonation reflects that the eclogites and blueschist experienced a similar P-T evo- lution trajectory, with a near iso-baric heating in the early stage, and reached eclogite facies metamorphic field with peak P-T regime of 480-515~C, 2.00-2.30 GPa. Subsequently the rocks experienced an early iso-thermal decompression retrograde stage with P-T conditions of 515-519~C, 1.78-1.93 GPa. Variations of mineralogy and modes of these rocks are probably due to different retrograde paths as a consequence of different bulk-rock composition, as well as a variation in fluid activity during exhumation. P-T calculation and a peak geothermal gradient of 6-7~C/km indicate HP rocks in the Kekesu Valley experienced cold subducted eclogite facies metamorphism. Thus a huge oceanic subduction eclogite facies metamorphic belt in southwest Tianshan has been recognized, extending from the Kekesu Valley in the east to the Muzhaerte Valley in the west for nearly 200 kin. However, UHP evidence has not been found in the Kekesu terrane, perhaps because the slab in east part of southwest Tianshan did not subduct into such a great depth.展开更多
The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contac...The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contact zone between Yanshanian granites and Carboniferous-Permian limestone. Granites related to this mineralization mainly include equigranular, middle- to coarse-grained granites and granitic porphyries. There are two mineralization types: skarn scheelite(copper) and granite scheelite mineralization. The former is large scale and has a high content of scheelite, whereas the latter is small scale and has a low content of scheelite. In the Taqian-Fuchun Basin, its NW boundary is a thrust fault, and the SE boundary is an angular unconformity with Proterozoic basement. In Carboniferous-Permian rock assemblages, the tungsten and copper contents in the limestone are both very high. The contents of major elements in granitoids do not differ largely between the periphery and the inside of the Zhuxi ore deposit. In both areas, the values of the aluminum saturation index are A/CNK>1.1, and the rocks are classified as potassium-rich strongly peraluminous granites. In terms of trace elements, compared to granites on the periphery of the Zhuxi ore deposit, the granites inside the Zhuxi ore deposit have smaller d Eu values, exhibit a significantly more negative Eu anomaly, are richer in Rb, U, Ta, Pb and Hf, and are more depleted in Ba, Ce, Sr, La and Ti, which indicates that they are highly differentiated S-type granites with a high degree of evolution. Under the influence of fluids, mineralization of sulfides is evident within massive rock formations inside the Zhuxi ore deposit, and the mean SO_3 content is 0.2%. Compared to peripheral rocks, the d Eu and total rare earth element(REE) content of granites inside the Zhuxi ore deposit are both lower, indicating a certain evolutionary inheritance relationship between the granites on the periphery and the granites inside the Zhuxi ore deposit. For peripheral and ore district plutons, U-Pb zircon dating shows an age range of 152–148 Ma. In situ Lu-Hf isotope analysis of zircon in the granites reveals that the calculated e_(Hf)(t) values are all negative, and the majority range from -6 to -9. The T_(DM2) values are concentrated in the range of 1.50–1.88 Ga(peak at 1.75 Ga), suggesting that the granitic magmas are derived from partial melting of ancient crust. This paper also discusses the metallogenic conditions and ore-controlling conditions of the ore district from the perspectives of mineral contents, hydrothermal alteration, and ore-controlling structures in the strata and the ore-bearing rocks. It is proposed that the Zhuxi ore deposit went through a multistage evolution, including oblique intrusion of granitic magmas, skarn mineralization, cooling and alteration, and precipitation of metal sulfides. The mineralization pattern can be summarized as "copper in the east and tungsten in the west, copper at shallow-middle depths and tungsten at deep depths, tungsten in the early stage and copper in the late stage".展开更多
This work studies new petrological and geochemical data and zircon U-Pb ages for bimodal intrusive rocks from Xinglong re- gion, Hainan Island. Zircon U-Pb dating yields mean 238U/26pb ages of 238 ± 2 Ma and 234&...This work studies new petrological and geochemical data and zircon U-Pb ages for bimodal intrusive rocks from Xinglong re- gion, Hainan Island. Zircon U-Pb dating yields mean 238U/26pb ages of 238 ± 2 Ma and 234±2 Ma for diabasic and granitic phases, respectively, representing the Middle Triassic emplacement. The diabase and granite bodies were formed from discrete mafic and acidic magma sources that experienced local mechanical mixing at their mutual contacts. Although SiO2 content of intrusions is bimodal, trace element ratios indicate that both were formed in a post-orogenic extensional setting. Sr-Nd isotopic composition reflects a shared EMII type enriched mantle source component, possibly influenced by subduction-fluid metaso- matism.展开更多
基金financially supported by the National Natural Science Foundation of China (Grant Nos.40703012,41030314)Geological Survey of China (Grant Nos.1212011120332,DD20160123-05)Chinese Ministry of Science and Technology (Grant 2012FY120100)
文摘We present zircon ages and geochemical data for the Hongshishan Carboniferous Alaskan-type mafic–ultramafic complex exposed in the Beishan area along the Sino–Mongolian boundary, southern margin of the Central Asian Orogenic Belt. This complex mainly consists of dunite,harzburgite, lherzolite, wehrlite, and gabbro, which intrudes Early Carboniferous volcanic rocks and reveals a zoned structure. Zircons of a gabbro sample yielded a 206Pb/238 U age of 357 ± 4 Ma, reflecting the time of Early Carboniferous magmatism. Zircon ages were also obtained for an andesite(322 ± 3 Ma) and a basaltic andesite(304 ± 2 Ma).High initial Nd isotope whole-rock values suggest that the Hongshishan gabbro [e_(Nd(t))= +9.6-+10.2] and basalt[eNd(t)= +10.0-+10.8] were derived from a depleted mantle source. Slightly lower eNd(t)values for the ultramafic rocks [eNd(t)= +8.5-+8.7] suggest some interaction of the parental magma with the continental crust. In contrast, the Late Carboniferous Quershan samples in this area represent subduction-related arc volcanic rocks with Adakite-like compositions. The early Carboniferous Hongshishan Alaskan-type complex was interpreted to represent the remnants of a magma chamber that crystallized at the base of a mature island arc, whereas the Quershan island arc volcanic rockssuggest the resurrection of the subduction process after arccontinent collision and uplift of the roots of the arc.
基金Project(51174285)supported by the National Natural Science Foundation of China and the Shenhua Group Corporation Limited,ChinaProject(CXZZ12_0949)supported by the Research and Innovation Project for College Graduates of Jiangsu Province,ChinaProject(SZBF2011-6-B35)supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Rock burst is one of the most catastrophic dynamic hazards in coal mining. A static and dynamic stresses superposition-based(SDSS-based) risk evaluation method of rock burst was proposed to pre-evaluate rock burst risk. Theoretical basis of this method is the stress criterion incurring rock burst and rock burst risk is evaluated according to the closeness degree of the total stress(due to the superposition of static stress in the coal and dynamic stress induced by tremors) with the critical stress. In addition, risk evaluation criterion of rock burst was established by defining the "Satisfaction Degree" of static stress. Furthermore,the method was used to pre-evaluate rock burst risk degree and prejudge endangered area of an insular longwall face in Nanshan Coal Mine in China. Results show that rock burst risk is moderate at advance extent of 97 m, strong at advance extent of 97-131 m,and extremely strong(i.e. inevitable to occur) when advance extent exceeds 131 m(mining is prohibited in this case). The section of two gateways whose floor abuts 15-3 coal seam is a susceptible area prone to rock burst. Evaluation results were further compared with rock bursts and tremors detected by microseismic monitoring. Comparison results indicate that evaluation results are consistent with microseismic monitoring, which proves the method's feasibility.
基金supported by the Major State Basic Research Development Program(Grant No.2009CB825007)the National Natural Science Foundation of China(Grant Nos.41121062&41272069)
文摘Eclogites and omphacite-bearing blueschists have been newly found in the eastern segment of the southwest Tianshan orogenic belt, Xinjiang, northwest China. After detailed petrological study, three samples including one fresh eclogite TK003, one blueschist sample TK026-8 and one retrograded eclogite TK027, were selected for phase equilibrium modeling under NC(K)MnFMASHO (N20-CaO-K20-MnO-FeO-MgO-A1203-SiO2-H:O-O) system, by thermocalc 3.33 software. Composition analyses of garnets in these three samples show typical growth zoning with Xpy and Xgrs increasing, Xspss decreasing from core to rim. Pseudosection modeling of the garnet zonation reflects that the eclogites and blueschist experienced a similar P-T evo- lution trajectory, with a near iso-baric heating in the early stage, and reached eclogite facies metamorphic field with peak P-T regime of 480-515~C, 2.00-2.30 GPa. Subsequently the rocks experienced an early iso-thermal decompression retrograde stage with P-T conditions of 515-519~C, 1.78-1.93 GPa. Variations of mineralogy and modes of these rocks are probably due to different retrograde paths as a consequence of different bulk-rock composition, as well as a variation in fluid activity during exhumation. P-T calculation and a peak geothermal gradient of 6-7~C/km indicate HP rocks in the Kekesu Valley experienced cold subducted eclogite facies metamorphism. Thus a huge oceanic subduction eclogite facies metamorphic belt in southwest Tianshan has been recognized, extending from the Kekesu Valley in the east to the Muzhaerte Valley in the west for nearly 200 kin. However, UHP evidence has not been found in the Kekesu terrane, perhaps because the slab in east part of southwest Tianshan did not subduct into such a great depth.
基金supported by the National Basic Research Program of China(Grant No.2012CB416701)National Natural Science Foundation of China(Grant Nos.41330208+3 种基金41572200)National Science and Technology Support Program(Grant No.2011BAB04B02)the Jiangxi Geological Exploration Fund(Grant No.20100112)Jiangxi Science and Technology Project(Grant No.20122BBG70068)
文摘The Zhuxi ore deposit is a super-large scheelite(copper) polymetallic deposit discovered in recent years. It grew above copper/tungsten-rich Neoproterozoic argilloarenaceous basement rocks and was formed in the contact zone between Yanshanian granites and Carboniferous-Permian limestone. Granites related to this mineralization mainly include equigranular, middle- to coarse-grained granites and granitic porphyries. There are two mineralization types: skarn scheelite(copper) and granite scheelite mineralization. The former is large scale and has a high content of scheelite, whereas the latter is small scale and has a low content of scheelite. In the Taqian-Fuchun Basin, its NW boundary is a thrust fault, and the SE boundary is an angular unconformity with Proterozoic basement. In Carboniferous-Permian rock assemblages, the tungsten and copper contents in the limestone are both very high. The contents of major elements in granitoids do not differ largely between the periphery and the inside of the Zhuxi ore deposit. In both areas, the values of the aluminum saturation index are A/CNK>1.1, and the rocks are classified as potassium-rich strongly peraluminous granites. In terms of trace elements, compared to granites on the periphery of the Zhuxi ore deposit, the granites inside the Zhuxi ore deposit have smaller d Eu values, exhibit a significantly more negative Eu anomaly, are richer in Rb, U, Ta, Pb and Hf, and are more depleted in Ba, Ce, Sr, La and Ti, which indicates that they are highly differentiated S-type granites with a high degree of evolution. Under the influence of fluids, mineralization of sulfides is evident within massive rock formations inside the Zhuxi ore deposit, and the mean SO_3 content is 0.2%. Compared to peripheral rocks, the d Eu and total rare earth element(REE) content of granites inside the Zhuxi ore deposit are both lower, indicating a certain evolutionary inheritance relationship between the granites on the periphery and the granites inside the Zhuxi ore deposit. For peripheral and ore district plutons, U-Pb zircon dating shows an age range of 152–148 Ma. In situ Lu-Hf isotope analysis of zircon in the granites reveals that the calculated e_(Hf)(t) values are all negative, and the majority range from -6 to -9. The T_(DM2) values are concentrated in the range of 1.50–1.88 Ga(peak at 1.75 Ga), suggesting that the granitic magmas are derived from partial melting of ancient crust. This paper also discusses the metallogenic conditions and ore-controlling conditions of the ore district from the perspectives of mineral contents, hydrothermal alteration, and ore-controlling structures in the strata and the ore-bearing rocks. It is proposed that the Zhuxi ore deposit went through a multistage evolution, including oblique intrusion of granitic magmas, skarn mineralization, cooling and alteration, and precipitation of metal sulfides. The mineralization pattern can be summarized as "copper in the east and tungsten in the west, copper at shallow-middle depths and tungsten at deep depths, tungsten in the early stage and copper in the late stage".
基金supported China Postdoctoral Science Foundation (Grant No. 2011M500991)Basic Scientific Research Specific Foundation of Second Insitute of Oceanography, SIO (Grant No. JT1104)
文摘This work studies new petrological and geochemical data and zircon U-Pb ages for bimodal intrusive rocks from Xinglong re- gion, Hainan Island. Zircon U-Pb dating yields mean 238U/26pb ages of 238 ± 2 Ma and 234±2 Ma for diabasic and granitic phases, respectively, representing the Middle Triassic emplacement. The diabase and granite bodies were formed from discrete mafic and acidic magma sources that experienced local mechanical mixing at their mutual contacts. Although SiO2 content of intrusions is bimodal, trace element ratios indicate that both were formed in a post-orogenic extensional setting. Sr-Nd isotopic composition reflects a shared EMII type enriched mantle source component, possibly influenced by subduction-fluid metaso- matism.