Using hydrographic data covering large areas of ocean for the period from June 21 to July 5 in 2009, we studied the circulation structure in the Luzon Strait area, examined the routes of water exchange between the Sou...Using hydrographic data covering large areas of ocean for the period from June 21 to July 5 in 2009, we studied the circulation structure in the Luzon Strait area, examined the routes of water exchange between the South China Sea (SCS) and the Philippine Sea, and estimated the volume transport through Luzon Strait. We found that the Kuroshio axis follows a e-shaped path slightly east of 121°E in the upper layer. With an increase in depth, the Kuroshio axis became gradually farther from the island of Luzon. To study the water exchange between the Philippine Sea and the SCS, identification of inflows and outflows is necessary. We first identified which flows contributed to the water exchange through Luzon Strait, which differs from the approach taken in previous studies. We determined that the obvious water exchange is in the section of 121°E. The westward inflow from the Philippine Sea into the SCS is 6.39 Sv in volume, and mainly in the 100-500 m layer at 19.5°-20°N (accounting for 4.40 Sv), while the outflow from the SCS into the Philippine Sea is concentrated in the upper 100 m at 19°-20°N and upper 400 m at 21°-21.5°N, and below 240 m at 19°-19.5°N, accounting for 1.07, 3.02 and 3.43 Sv in volume transport, respectively.展开更多
We examined regional empirical equations for estimating the surface concentration of particulate organic carbon (POC) in the South China Sea. These algorithms are based on the direct relationships between POC and th...We examined regional empirical equations for estimating the surface concentration of particulate organic carbon (POC) in the South China Sea. These algorithms are based on the direct relationships between POC and the blue-to-green band ratios of spectral remotely sensed reflectance, Rrs(λB)/Rrs(555). The best error statistics among the considered formulas were produced using the power function POC (rag/ m3)=262.173 [Rrs(443)/Rrs(555)]^-0.940. This formula resulted in a small mean bias of approximately -2.52%, a normalized root mean square error of 31.1%, and a determination coefficient of 0.91. This regional empirical equation is different to the results of similar studies in other oceanic regions. Our validation results suggest that our regional empirical formula performs better than the global algorithm, in the South China Sea. The feasibility of this band ratio algorithm is primarily due to the relationship between POC and the green-to- blue ratio of the particle absorption coefficient. Colored dissolved organic matter can be an important source of noise in the band ratio formula. Finally, we applied the empirical algorithm to investigate POC changes in the southwest of Luzon Strait.展开更多
Water masses in the South China Sea (SCS) were identified and analyzed with the data collected in the summer and winter of 1998. The distributions of temperature and salinity near the Bashi Channel (the Luzon Strait) ...Water masses in the South China Sea (SCS) were identified and analyzed with the data collected in the summer and winter of 1998. The distributions of temperature and salinity near the Bashi Channel (the Luzon Strait) were analyzed by using the data obtained in July and December of 1997. Based on the results from the data collected in the winter of 1998, waters in the open sea areas of the SCS were divided into six water masses: the Surface Water Mass of the SCS (S), the Subsurface Water Mass of the SCS (U), the Subsurface-Intermediate Water Mass of the SCS (UI),the Intermediate Water Mass of the SCS (I), the Deep Water Mass of the SCS (D) and the Bottom Water Mass of the SCS(B). For the summer of 1998, the Kuroshio Surface Water Mass (KS) and the Kuroshio Subsurface Water Mass (KU) were also identified in the SCS. But no Kuroshio water was found to pass the 119.5°E meridian and enter the SCS in the time of winter observations. The Sulu Sea Water (SSW) intruded into the SCS through the Mindoro Channel between 50-75 m in the summer of 1998. However, the data obtained in the summer and winter of 1997 indicated that water from the Pacific had entered the SCS through the nor-thern part of the Luzon Strait in these seasons, but water from the SCS had entered the Pacific through the southern part of the Strait. These phenomena might correlate with the 1998 El-Nio event.展开更多
A quasi-global high-resolution HYbrid Coordinate Ocean Model (HYCOM) is used to investigate seasonal variations of water transports through the four main straits in the South China Sea. The results show that the annua...A quasi-global high-resolution HYbrid Coordinate Ocean Model (HYCOM) is used to investigate seasonal variations of water transports through the four main straits in the South China Sea. The results show that the annual transports through the four straits Luzon Strait, Taiwan Strait, Sunda Shelf and Mindoro Strait are -4.5, 2.3, 0.5 and 1.7 Sv (1 Sv=106 m3s-1), respectively. The Mindoro Strait has an important outflow that accounts for over one third of the total inflow through the Luzon Strait. Furthermore, it indicates that there are strong seasonal variations of water transport in the four straits. The water transport through the Luzon Strait (Taiwan Strait, Sunda Shelf, Mindoro Strait) has a maximum value of -7.6 Sv in December (3.1 Sv in July, 2.1S v in January, 4.5Sv in November), a minimum value of -2.1 Sv in June (1.5 Sv in October, -1.0 Sv in June, -0.2 Sv in May), respectively.展开更多
The South Yellow Sea Basin is the main body of the lower Yangtze area in which marine Mesozoic–Paleozoic strata are widely distributed.The latest geophysical data were used to overcome the limitation of previous poor...The South Yellow Sea Basin is the main body of the lower Yangtze area in which marine Mesozoic–Paleozoic strata are widely distributed.The latest geophysical data were used to overcome the limitation of previous poor-quality deep data.Meanwhile,the geological characteristics of hydrocarbon reservoirs in the marine Mesozoic–Paleozoic strata in the South Yellow Sea Basin were analyzed by comparing the source rocks and the reservoir and utilizing drilling and outcrop data.It is believed that the South Yellow Sea Basin roughly underwent six evolutionary stages:plate spreading,plate convergence,stable platform development,foreland basin development,faulted basin development,and depression basin development.The South Yellow Sea Basin has characteristics of a composite platform-fault depression geological structure,with a half-graben geological structure and with a ‘sandwich structure' in the vertical direction.Four sets of hydrocarbon source rocks developed – the upper Permian Longtan–Dalong formation,the lower Permian Qixia formation,the lower Silurian Gaojiabian formation,and the lower Cambrian Hetang formation/Mufushan formation,giving the South Yellow Sea Basin relatively good hydrocarbon potential.The carbonate is the main reservoir rock type in the South Yellow Sea area,and there are four carbonate reservoir types:porous dolomitic,reef-bank,weathered crust,and fractured.There are reservoir-forming horizons similar to the typical hydrocarbon reservoirs in the Yangtze land area developed in the South Yellow Sea,and there are three sets of complete source-reservoir-cap rock assemblages developed in the marine strata,with very good hydrocarbon potential.展开更多
After reviewing the analytical theories of T S curve, some methods of T S relationship, and fuzzy sets for studying water masses, new methods of fitting the membership function of oceanic water masses are presented ba...After reviewing the analytical theories of T S curve, some methods of T S relationship, and fuzzy sets for studying water masses, new methods of fitting the membership function of oceanic water masses are presented based on the characteristics of T S curve family of oceanic water masses. The membership functions of oceanic Subsurface Water Mass with high salinity and Intermediate Water Mass with low salinity are fitted and discussed using the new methods. The proposed methods are useful in analyzing the mixing and modifying processes of these water masses, especially in tracing their sources. The principles and formulae of the new methods and examples are given.展开更多
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX1-YW-12)the National Natural Science Foundation of China (Nos. 41030855,41006013)
文摘Using hydrographic data covering large areas of ocean for the period from June 21 to July 5 in 2009, we studied the circulation structure in the Luzon Strait area, examined the routes of water exchange between the South China Sea (SCS) and the Philippine Sea, and estimated the volume transport through Luzon Strait. We found that the Kuroshio axis follows a e-shaped path slightly east of 121°E in the upper layer. With an increase in depth, the Kuroshio axis became gradually farther from the island of Luzon. To study the water exchange between the Philippine Sea and the SCS, identification of inflows and outflows is necessary. We first identified which flows contributed to the water exchange through Luzon Strait, which differs from the approach taken in previous studies. We determined that the obvious water exchange is in the section of 121°E. The westward inflow from the Philippine Sea into the SCS is 6.39 Sv in volume, and mainly in the 100-500 m layer at 19.5°-20°N (accounting for 4.40 Sv), while the outflow from the SCS into the Philippine Sea is concentrated in the upper 100 m at 19°-20°N and upper 400 m at 21°-21.5°N, and below 240 m at 19°-19.5°N, accounting for 1.07, 3.02 and 3.43 Sv in volume transport, respectively.
基金Supported by the National Natural Science Foundation of China(Nos.41376042,41176035)the Natural Science for Youth Foundation(No.41206029)+2 种基金the Youth Foundation by South China Sea Institute of Oceanology,Chinese Academy of Sciences(No.SQ201102)the Open Research Fund of State Key Laboratory of Estuarine and Coastal Research(No.SKLEC-KF201302)the Open Project Program of State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences(No.LTOZZ1201)
文摘We examined regional empirical equations for estimating the surface concentration of particulate organic carbon (POC) in the South China Sea. These algorithms are based on the direct relationships between POC and the blue-to-green band ratios of spectral remotely sensed reflectance, Rrs(λB)/Rrs(555). The best error statistics among the considered formulas were produced using the power function POC (rag/ m3)=262.173 [Rrs(443)/Rrs(555)]^-0.940. This formula resulted in a small mean bias of approximately -2.52%, a normalized root mean square error of 31.1%, and a determination coefficient of 0.91. This regional empirical equation is different to the results of similar studies in other oceanic regions. Our validation results suggest that our regional empirical formula performs better than the global algorithm, in the South China Sea. The feasibility of this band ratio algorithm is primarily due to the relationship between POC and the green-to- blue ratio of the particle absorption coefficient. Colored dissolved organic matter can be an important source of noise in the band ratio formula. Finally, we applied the empirical algorithm to investigate POC changes in the southwest of Luzon Strait.
基金supported by the Research Fund for the Doctoral Program of Higher Education,China(No.2000042301)Ministry of Science and Technology of China supported this study through South China Sea Monsoon Experiment(SCSMEX)National Key Program for Developing Basic Science under contract(No.G1999043800).
文摘Water masses in the South China Sea (SCS) were identified and analyzed with the data collected in the summer and winter of 1998. The distributions of temperature and salinity near the Bashi Channel (the Luzon Strait) were analyzed by using the data obtained in July and December of 1997. Based on the results from the data collected in the winter of 1998, waters in the open sea areas of the SCS were divided into six water masses: the Surface Water Mass of the SCS (S), the Subsurface Water Mass of the SCS (U), the Subsurface-Intermediate Water Mass of the SCS (UI),the Intermediate Water Mass of the SCS (I), the Deep Water Mass of the SCS (D) and the Bottom Water Mass of the SCS(B). For the summer of 1998, the Kuroshio Surface Water Mass (KS) and the Kuroshio Subsurface Water Mass (KU) were also identified in the SCS. But no Kuroshio water was found to pass the 119.5°E meridian and enter the SCS in the time of winter observations. The Sulu Sea Water (SSW) intruded into the SCS through the Mindoro Channel between 50-75 m in the summer of 1998. However, the data obtained in the summer and winter of 1997 indicated that water from the Pacific had entered the SCS through the nor-thern part of the Luzon Strait in these seasons, but water from the SCS had entered the Pacific through the southern part of the Strait. These phenomena might correlate with the 1998 El-Nio event.
基金Supported by National Natural Science Foundation of China (No. 40806012, 40876013)Open Fund of the Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences (No. KLOCAW0803)Scientific Research Foundation for talent, Guangdong Ocean University (No. E06118)
文摘A quasi-global high-resolution HYbrid Coordinate Ocean Model (HYCOM) is used to investigate seasonal variations of water transports through the four main straits in the South China Sea. The results show that the annual transports through the four straits Luzon Strait, Taiwan Strait, Sunda Shelf and Mindoro Strait are -4.5, 2.3, 0.5 and 1.7 Sv (1 Sv=106 m3s-1), respectively. The Mindoro Strait has an important outflow that accounts for over one third of the total inflow through the Luzon Strait. Furthermore, it indicates that there are strong seasonal variations of water transport in the four straits. The water transport through the Luzon Strait (Taiwan Strait, Sunda Shelf, Mindoro Strait) has a maximum value of -7.6 Sv in December (3.1 Sv in July, 2.1S v in January, 4.5Sv in November), a minimum value of -2.1 Sv in June (1.5 Sv in October, -1.0 Sv in June, -0.2 Sv in May), respectively.
基金supported by the National Natural Science Foundation of China(No.41506080)the Project of China Geological Survey(Nos.DD20160152,DD20160147,and GZH200800503)+1 种基金the Project of China Ministry of Land and Resources(Nos.XQ-2005-01,and 2009GYXQ10)the Postdoctoral Innovation Fund Project of Shandong Province(No.201602004)
文摘The South Yellow Sea Basin is the main body of the lower Yangtze area in which marine Mesozoic–Paleozoic strata are widely distributed.The latest geophysical data were used to overcome the limitation of previous poor-quality deep data.Meanwhile,the geological characteristics of hydrocarbon reservoirs in the marine Mesozoic–Paleozoic strata in the South Yellow Sea Basin were analyzed by comparing the source rocks and the reservoir and utilizing drilling and outcrop data.It is believed that the South Yellow Sea Basin roughly underwent six evolutionary stages:plate spreading,plate convergence,stable platform development,foreland basin development,faulted basin development,and depression basin development.The South Yellow Sea Basin has characteristics of a composite platform-fault depression geological structure,with a half-graben geological structure and with a ‘sandwich structure' in the vertical direction.Four sets of hydrocarbon source rocks developed – the upper Permian Longtan–Dalong formation,the lower Permian Qixia formation,the lower Silurian Gaojiabian formation,and the lower Cambrian Hetang formation/Mufushan formation,giving the South Yellow Sea Basin relatively good hydrocarbon potential.The carbonate is the main reservoir rock type in the South Yellow Sea area,and there are four carbonate reservoir types:porous dolomitic,reef-bank,weathered crust,and fractured.There are reservoir-forming horizons similar to the typical hydrocarbon reservoirs in the Yangtze land area developed in the South Yellow Sea,and there are three sets of complete source-reservoir-cap rock assemblages developed in the marine strata,with very good hydrocarbon potential.
基金supported by the Research Funds for the Doctoral Program of Higher Education in China(No.2000042301)the National Natural Science Foundation of China(No.40276009)The Ministry of Science and Technology of China supported this study through the South China Sea Monsoon Experiment(SCSMEX)program and the National Key Program for Developing Basic Science under contract(No.G1999043800).
文摘After reviewing the analytical theories of T S curve, some methods of T S relationship, and fuzzy sets for studying water masses, new methods of fitting the membership function of oceanic water masses are presented based on the characteristics of T S curve family of oceanic water masses. The membership functions of oceanic Subsurface Water Mass with high salinity and Intermediate Water Mass with low salinity are fitted and discussed using the new methods. The proposed methods are useful in analyzing the mixing and modifying processes of these water masses, especially in tracing their sources. The principles and formulae of the new methods and examples are given.