The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of th...The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of the SCS.Early observations have suggested that water enters the SCS in winter but water inflow or outflow in summer is quite controversial.On the basis of hydrographic measurements from CTD along 120° E in the Luzon Strait during the period from September 18 to 20 in 2006,the characteristics of temperature,salinity and density distributions are analyzed.The velocity and volume transport through the Luzon Strait are calculated using the method of dynamic calculation.The major observed results show that water exchanges are mainly from the Pacific to the South China Sea in the upper layer,and the flow is relatively weak and eastward in the deeper layer.The net volume transport of the Luzon Strait during the observation period is westward,amounts to about 3.25 Sv.This result is consistent with historical observations.展开更多
We investigated the vertical distribution of current velocity data of the entire water column at a site on the continental shelf of the northern South China Sea(SCS) from August 4 to September 6,2007,and found that th...We investigated the vertical distribution of current velocity data of the entire water column at a site on the continental shelf of the northern South China Sea(SCS) from August 4 to September 6,2007,and found that the characteristics of barotropic and baroclinic tides are mainly diurnal.During the observation period,we also estimated the mixing before and after the passage of Typhoon Pabuk.We found that the internal-wave-scale dissipation rate,the turbulent dissipation rate,and the mixing rate in every water layer increased by about an order of magnitude after the typhoon passage.We analyzed a case of abrupt strong current and calculated the mixing rate before,during,and after the typhoon event.The results show that the internal-wave-scale dissipation rate and the mixing rate in every water layer increased by about two orders of magnitude during the event,while the turbulent dissipation rate increased by about an order of magnitude.Passage of the abrupt strong current could also have increased the mixing rate of affected seawater by more than an order of magnitude.However,the passage of the typhoon differed in that there was an increase in mixing only in the lower layer where the abrupt strong current was particularly strong.The variation of the mixing rate may help us to understand the effects of typhoons and abrupt strong currents on the mixing of seawater.展开更多
Based on a data base of multi-channel seismic profiles covered over Dongsha plateau of the northern South China Sea margin, we found that the sea bed morphology of northern South China Sea margin had been changed dram...Based on a data base of multi-channel seismic profiles covered over Dongsha plateau of the northern South China Sea margin, we found that the sea bed morphology of northern South China Sea margin had been changed dramatically after Dongsha uplifting, that sedimentary layer since Miocene age had been eroded with maximum eroded thickness more than 1000 m, and that an erosive channel had been formed of 20 km in width and 200 km in length and several hundreds meters in depth on the outer shelf of northern South China Sea. The erosive channel is parallel to the 600 m isobath line, stretching from northeast to the southwest north of Dongsha uplift. The Kuroshio intrudes the South China Sea through Luzon Strait both in winter time and summer time, and in the northern South China Sea margin area, the intruded Kuroshio Branch takes the form of Pacific-Indian Ocean Through Flow (PITH) in winter time, while the Luzon Strait Subsurface Inflow (LSSIF) in summer time, the routes of both PITH and LSSIF coincide well with the distribution of the erosive channel. After climbing from the northern slope up to the northern shelf, and after joined by the southward flow from the middle northern shelf of South China Sea, the Kuroshio Branch is strengthened and thus is able to erode the sea floor, and the shape of the erosive channel is a result of the long-term interaction between the Kuroshio South China Sea Branch and the Dongsha outer shelf sea floor.展开更多
基金Supported by the Knowledge Innovation Project of CAS (No KZCX2-YW-214,the NSFC (No 40806010)the National Basic Research Program of China (973 Program) (No 403603)
文摘The Luzon Strait is the only deep channel that connects the South China Sea(SCS) with the Pacific.The transport through the Luzon Strait is an important process influencing the circulation,heat and water budgets of the SCS.Early observations have suggested that water enters the SCS in winter but water inflow or outflow in summer is quite controversial.On the basis of hydrographic measurements from CTD along 120° E in the Luzon Strait during the period from September 18 to 20 in 2006,the characteristics of temperature,salinity and density distributions are analyzed.The velocity and volume transport through the Luzon Strait are calculated using the method of dynamic calculation.The major observed results show that water exchanges are mainly from the Pacific to the South China Sea in the upper layer,and the flow is relatively weak and eastward in the deeper layer.The net volume transport of the Luzon Strait during the observation period is westward,amounts to about 3.25 Sv.This result is consistent with historical observations.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX1-YW-12-03)China National Funds for Distinguished Young Scientists, National High Technology Research and Development Program of China (863 Program) (Nos.2008AA09Z112,2008AA09A402)+1 种基金National Natural Science Foundation of China (No.40676021)the Chinese Oceanic Association (No.DYXM-115-02-4-02)
文摘We investigated the vertical distribution of current velocity data of the entire water column at a site on the continental shelf of the northern South China Sea(SCS) from August 4 to September 6,2007,and found that the characteristics of barotropic and baroclinic tides are mainly diurnal.During the observation period,we also estimated the mixing before and after the passage of Typhoon Pabuk.We found that the internal-wave-scale dissipation rate,the turbulent dissipation rate,and the mixing rate in every water layer increased by about an order of magnitude after the typhoon passage.We analyzed a case of abrupt strong current and calculated the mixing rate before,during,and after the typhoon event.The results show that the internal-wave-scale dissipation rate and the mixing rate in every water layer increased by about two orders of magnitude during the event,while the turbulent dissipation rate increased by about an order of magnitude.Passage of the abrupt strong current could also have increased the mixing rate of affected seawater by more than an order of magnitude.However,the passage of the typhoon differed in that there was an increase in mixing only in the lower layer where the abrupt strong current was particularly strong.The variation of the mixing rate may help us to understand the effects of typhoons and abrupt strong currents on the mixing of seawater.
基金supported by National Basic Research Program of China (Grant No. 2007CB411702)
文摘Based on a data base of multi-channel seismic profiles covered over Dongsha plateau of the northern South China Sea margin, we found that the sea bed morphology of northern South China Sea margin had been changed dramatically after Dongsha uplifting, that sedimentary layer since Miocene age had been eroded with maximum eroded thickness more than 1000 m, and that an erosive channel had been formed of 20 km in width and 200 km in length and several hundreds meters in depth on the outer shelf of northern South China Sea. The erosive channel is parallel to the 600 m isobath line, stretching from northeast to the southwest north of Dongsha uplift. The Kuroshio intrudes the South China Sea through Luzon Strait both in winter time and summer time, and in the northern South China Sea margin area, the intruded Kuroshio Branch takes the form of Pacific-Indian Ocean Through Flow (PITH) in winter time, while the Luzon Strait Subsurface Inflow (LSSIF) in summer time, the routes of both PITH and LSSIF coincide well with the distribution of the erosive channel. After climbing from the northern slope up to the northern shelf, and after joined by the southward flow from the middle northern shelf of South China Sea, the Kuroshio Branch is strengthened and thus is able to erode the sea floor, and the shape of the erosive channel is a result of the long-term interaction between the Kuroshio South China Sea Branch and the Dongsha outer shelf sea floor.