To satisfy mobile terminals ’( MTs) offloading requirements and reduce MTs’ cost,a joint cloud and wireless resource allocation scheme based on the evolutionary game( JRA-EG) is proposed for overlapping heterogeneou...To satisfy mobile terminals ’( MTs) offloading requirements and reduce MTs’ cost,a joint cloud and wireless resource allocation scheme based on the evolutionary game( JRA-EG) is proposed for overlapping heterogeneous networks in mobile edge computing environments. MTs that have tasks offloading requirements in the same service area form a population. MTs in one population acquire different wireless and computation resources by selecting different service providers( SPs). An evolutionary game is formulated to model the SP selection and resource allocation of the MTs. The cost function of the game consists of energy consumption,time delay and monetary cost. The solutions of evolutionary equilibrium( EE) include the centralized algorithm based on replicator dynamics and the distributed algorithm based on Q-learning.Simulation results show that both algorithms can converge to the EE rapidly. The differences between them are the convergence speed and trajectory stability. Compared with the existing schemes,the JRA-EG scheme can save more energy and have a smaller time delay when the data size becomes larger. The proposed scheme can schedule the wireless and computation resources reasonably so that the offloading cost is reduced efficiently.展开更多
Under green supply chain mode, how to Carry out the distribution of profits between subjects is an important problem. Through the comparison of the green supply chain benefit allocation of non-cooperative game and coo...Under green supply chain mode, how to Carry out the distribution of profits between subjects is an important problem. Through the comparison of the green supply chain benefit allocation of non-cooperative game and cooperative game the payoffmatrix, it is clearly that the necessity of interest distribution cooperative game. Put general manufacturing enterprises of green supply chain as the research object, using Shapley value method for theory analysis and example verification, vertifys that enterprise synergy gains more than their own separate management, and puts forward a feasible path of supply chain collaboration through the construction of the distribution of interests coordination model.展开更多
A cross-layer resource allocation scheme based on potential game(CLRA_ PG) is proposed for the downlink multi-cell orthogonal frequency-division multiple-access(OFDMA) system with universal frequency reuse.As a method...A cross-layer resource allocation scheme based on potential game(CLRA_ PG) is proposed for the downlink multi-cell orthogonal frequency-division multiple-access(OFDMA) system with universal frequency reuse.As a method to mitigate inter-cell interference(ICI),base station coordination has been considered.In the process of the objective function modeling,this paper adopts a pricing mechanism which not only maximizes the individual utility but also considers the interference to other users.Based on the potential game theory,the objective problem is converted to a potential function which can be easily solved.The Karush-Kuhn-Tucker(KKT) conditions and the iterative water-filling algorithm are employed to solve the constraint objective optimization problem.Moreover,extensive simulations are conducted to evaluate how the pricing factors affect the algorithm.At the same time,comparing with the traditional policy,our simulation results show that the proposed scheme can significantly improve the performance of the system.展开更多
In thsssse cellular network, Relay Stations (RSs) help to improve the system performance; however, little work has been done considering the fairness of RSs. In this paper, we study the cooperative game approaches for...In thsssse cellular network, Relay Stations (RSs) help to improve the system performance; however, little work has been done considering the fairness of RSs. In this paper, we study the cooperative game approaches for scheduling in the wireless relay networks with two-virtual-antenna array mode. After defining the metric of relay channel capacity, we form a cooperative game for scheduling and present the interpretation of three different utilization objectives physically and mathematically. Then, a Nash Bargaining Solution (NBS) is utilized for resource allocation considering the traffic load fairness for relays. After proving the existence and uniqueness of NBS in Cooperative Game (CG-NBS), we are able to resolve the resource allocation problem in the cellular relay network by the relay selection and subcarrier assignment policy and the power allocation algorithm for both RSs and UEs. Simulation results reveal that the proposed CG-NBS scheme achieves better tradeoff between relay fairness and system throughput than the conventional Maximal Rate Optimization and Maximal Minimal Fairness methods.展开更多
基金The National Natural Science Foundation of China(No.61741102,61471164)
文摘To satisfy mobile terminals ’( MTs) offloading requirements and reduce MTs’ cost,a joint cloud and wireless resource allocation scheme based on the evolutionary game( JRA-EG) is proposed for overlapping heterogeneous networks in mobile edge computing environments. MTs that have tasks offloading requirements in the same service area form a population. MTs in one population acquire different wireless and computation resources by selecting different service providers( SPs). An evolutionary game is formulated to model the SP selection and resource allocation of the MTs. The cost function of the game consists of energy consumption,time delay and monetary cost. The solutions of evolutionary equilibrium( EE) include the centralized algorithm based on replicator dynamics and the distributed algorithm based on Q-learning.Simulation results show that both algorithms can converge to the EE rapidly. The differences between them are the convergence speed and trajectory stability. Compared with the existing schemes,the JRA-EG scheme can save more energy and have a smaller time delay when the data size becomes larger. The proposed scheme can schedule the wireless and computation resources reasonably so that the offloading cost is reduced efficiently.
文摘Under green supply chain mode, how to Carry out the distribution of profits between subjects is an important problem. Through the comparison of the green supply chain benefit allocation of non-cooperative game and cooperative game the payoffmatrix, it is clearly that the necessity of interest distribution cooperative game. Put general manufacturing enterprises of green supply chain as the research object, using Shapley value method for theory analysis and example verification, vertifys that enterprise synergy gains more than their own separate management, and puts forward a feasible path of supply chain collaboration through the construction of the distribution of interests coordination model.
基金Supported by the National Key Technology R&D Program of China(No.2010ZX03003-001-01,2011 ZX03003-002-01)National Natural Science Foundation of China(No.61101109)the Co-building Project of Beijing Municipal Education Commission"G-RAN based Experimental Platform for Future Mobile Communications"
文摘A cross-layer resource allocation scheme based on potential game(CLRA_ PG) is proposed for the downlink multi-cell orthogonal frequency-division multiple-access(OFDMA) system with universal frequency reuse.As a method to mitigate inter-cell interference(ICI),base station coordination has been considered.In the process of the objective function modeling,this paper adopts a pricing mechanism which not only maximizes the individual utility but also considers the interference to other users.Based on the potential game theory,the objective problem is converted to a potential function which can be easily solved.The Karush-Kuhn-Tucker(KKT) conditions and the iterative water-filling algorithm are employed to solve the constraint objective optimization problem.Moreover,extensive simulations are conducted to evaluate how the pricing factors affect the algorithm.At the same time,comparing with the traditional policy,our simulation results show that the proposed scheme can significantly improve the performance of the system.
基金supported in part by the State Major Science and Technology Special Projects under Grant No. 2012ZX03004001the National Basic Research Program (973) of China under Grants No. 2012CB315801, No. 2011CB302901the Chinese Universities Scientific Fund under Grant No. 2012RC0306
文摘In thsssse cellular network, Relay Stations (RSs) help to improve the system performance; however, little work has been done considering the fairness of RSs. In this paper, we study the cooperative game approaches for scheduling in the wireless relay networks with two-virtual-antenna array mode. After defining the metric of relay channel capacity, we form a cooperative game for scheduling and present the interpretation of three different utilization objectives physically and mathematically. Then, a Nash Bargaining Solution (NBS) is utilized for resource allocation considering the traffic load fairness for relays. After proving the existence and uniqueness of NBS in Cooperative Game (CG-NBS), we are able to resolve the resource allocation problem in the cellular relay network by the relay selection and subcarrier assignment policy and the power allocation algorithm for both RSs and UEs. Simulation results reveal that the proposed CG-NBS scheme achieves better tradeoff between relay fairness and system throughput than the conventional Maximal Rate Optimization and Maximal Minimal Fairness methods.