Steganalysis attack is to statistically estimate the embedded watermark in the watermarked multimedia,and the estimated watermark may be destroyed by the attacker.The existing methods of false negative probability,how...Steganalysis attack is to statistically estimate the embedded watermark in the watermarked multimedia,and the estimated watermark may be destroyed by the attacker.The existing methods of false negative probability,however,do not consider the influence of steganalysis attack.This paper proposed the game theory based false negative probability to estimate the impacts of steganalysis attack,as well as unintentional attack.Specifically,game theory was used to model the collision between the embedment and steganalysis attack,and derive the optimal building embedding/attacking strategy.Such optimal playing strategies devote to calculating the attacker destructed watermark,used for calculation of the game theory based false negative probability.The experimental results show that watermark detection reliability measured using our proposed method,in comparison,can better reflect the real scenario in which the embedded watermark undergoes unintentional attack and the attacker using steganalysis attack.This paper provides a foundation for investigating countermeasures of digital watermarking community against steganalysis attack.展开更多
Device-to-Device(D2D) communication has been proposed as a promising implementation of green communication to benefit the existed cellular network.In order to limit cross-tier interference while explore the gain of sh...Device-to-Device(D2D) communication has been proposed as a promising implementation of green communication to benefit the existed cellular network.In order to limit cross-tier interference while explore the gain of short-range communication,we devise a series of distributed power control(DPC) schemes for energy conservation(EC)and enhancement of radio resource utilization in the hybrid system.Firstly,a constrained opportunistic power control model is built up to take advantage of the interference avoidance methodology in the presence of service requirement and power constraint.Then,biasing scheme and admission control are added to evade ineffective power consumption and maintain the feasibility of the system.Upon feasibility,a non-cooperative game is further formulated to exploit the profit in EC with minor influence on spectral efficiency(SE).The convergence of the DPC schemes is validated and their performance is confirmed via simulation results.展开更多
Recently, content-centric networking (CCN) has become a hot research topic for the diffusion of contents over the Internet. Most existing works on CCN focus on the improvement of network resource utilization. Conseq...Recently, content-centric networking (CCN) has become a hot research topic for the diffusion of contents over the Internet. Most existing works on CCN focus on the improvement of network resource utilization. Consequently, the energy consumption aspect of CCN is largely ignored. In this paper, we propose a distributed energyefficient in-network caching scheme for CCN, where each content router only needs locally available information to make caching decisions considering both caching energy consumption and transport energy consumption. We formulate the in-network caching problem as a non-cooperative game. Through rigorous mathematical analysis, we prove that pure strategy Nash equilibria exist in the proposed scheme, and it always has a strategy profile that implements the socially optimal configuration, even if the touters are self-interested in nature. Simulation results are presented to show that the distributed solution is competitive to the centralized scheme, and has superior performance compared to other popular caching schemes in CCN. Besides, it exhibits a fast convergence speed when the capacity of content routers varies.展开更多
In our society, it is a major issue to enhance cooperative behaviors. Without this, our society fall into social dilemma situations, and gets worse and worse. Such a situation in an organization leads to violation of ...In our society, it is a major issue to enhance cooperative behaviors. Without this, our society fall into social dilemma situations, and gets worse and worse. Such a situation in an organization leads to violation of social or organizational rules, and at the worst case it suffers from serious accidents or scandals. Therefore, it is important for organizational managers to make efforts and take measures to enhance cooperative behaviors. Although there seem to be many ways to constantly elicit cooperative behaviors, the punishment is one of the most effective measures for enhancing cooperation. This study focused on the effects of penalty and probability of the revelation of defection on the cooperation, and getting insight into how punishment strategy should be used to get rid of social dilemmas and enhance cooperation. This study conducted a simulation experiment to find the proper penal regulations condition that can suppress violations (defective behavior) in a 2-person prisoner's dilemma situation. The effects of probability of the revelation of defection and penalty to revelation on the cooperative behavior were identified with the interactive effect of both experimental factors. The defection (uncooperative behavior) decreased when the penalty to the defection was heavy and the probability of the revelation of defection was low than that when the penalty to the defection was light and the probability of the revelation of the defection was high.展开更多
Using economics and game theory, two kinds of models have been proposed in this paper under the assumption that foreign and domestic firms behave under the condition of dynamic game of perfect information. One model i...Using economics and game theory, two kinds of models have been proposed in this paper under the assumption that foreign and domestic firms behave under the condition of dynamic game of perfect information. One model is for calculating Anti-dumping rate which is obtained according to current regulations of Anti-dumping, but it is not optimal. The other is an optimal model of Anti-dumping which is obtained according to the maximum principle of domestic social welfare. Then, through the comparison of this two models in detail, several shortages have been revealed about Anti-dumping rate model based on current regulations of Anti-dumping. Finally, a suggestion is indicated that WTO and China should use the optimal model to calculate Anti-dumping rate.展开更多
In this study, aiming at the characteristics of randomness and dynamics in Wearable Audiooriented BodyNets (WA-BodyNets), stochastic differential game theory is applied to the investigation of the problem of transm...In this study, aiming at the characteristics of randomness and dynamics in Wearable Audiooriented BodyNets (WA-BodyNets), stochastic differential game theory is applied to the investigation of the problem of transmitted power control inconsumer electronic devices. First, astochastic differential game model is proposed for non-cooperative decentralized uplink power control with a wisdom regulation factor over WA-BodyNets with a onehop star topology.This model aims to minimize the cost associated with the novel payoff function of a player, for which two cost functions are defined: functions of inherent power radiation and accumulated power radiation darmge. Second, the feedback Nash equilibrium solution of the proposed model and the constraint of the Quality of Service (QoS) requirement of the player based on the SIR threshold are derived by solving the Fleming-Bellman-Isaacs partial differential equations. Furthermore, the Markov property of the optimal feedback strategies in this model is verified.The simulation results show that the proposed game model is effective and feasible for controlling the transmitted power of WA-BodyNets.展开更多
Wireless Body Area Network(WBAN) is an emerging technology to provide real-time health monitoring and ubiquitous healthcare services. In many applications, multiple wireless body area networks have to coexist in a sma...Wireless Body Area Network(WBAN) is an emerging technology to provide real-time health monitoring and ubiquitous healthcare services. In many applications, multiple wireless body area networks have to coexist in a small area, resulting in serious inter-network interference. This not only reduces network reliability that is especially important in emergency medical applications, but also consumes more power of WBANs. In this paper, an inter-network interference mitigation approach based on a power control algorithm is proposed. Power control is modeled as a non-cooperative game, in which both inter-network interference and energy efficiency of WBANs are considered. The existence and uniqueness of Nash Equilibrium in the game are proved, and an optimal scheme based on best response is proposed to find its Nash Equilibrium. By coordinating the transmission power levels among networks under interference environment, the total system throughput can be increased with minimum power consumed. The effectiveness of the proposed method has been illustrated by simulation results, where the performance of the proposed approach is evaluated in terms of overall utility and power efficiency and convergence speed.展开更多
This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the ...This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the Quality of Service (QoS) standards for primary users is considered and a non-cooperative game power control model. Based on the proposed model, we developed a logical utility function based on the Signal-to-Interference-Noise Ratio (S/NR) and a novel algorithm network power control. that is suitable for CR Then, the existence and uniqueness of the Nash Equilibrium (NE) in our utility function are proved by the principle of game theory and the corresponding optimi- zations. Compared to traditional algorithms, the proposed one could converge to an NE in 3-5 iterative operations by setting an appropriate pricing factor. Finally, simulation results ver- ified the stability and superiority of the novel algorithm in flat-fading channel environments.展开更多
Accurate prediction of wind power is significant for power system dispatching as well as safe and stable operation. By means of BP neural network, radial basis function neural network and support vector machine, a new...Accurate prediction of wind power is significant for power system dispatching as well as safe and stable operation. By means of BP neural network, radial basis function neural network and support vector machine, a new combined method of wind power prediction based on cooperative game theory is proposed. In the method, every single forecasting model is regarded as a member of the cooperative games, and the sum of square error of combination forecasting is taken as the result of cooperation. The result is divided among the members according to Shapley values, and then weights of combination forecasting can be obtained. Application results in an actual wind farm show that the proposed method can effectively improve prediction precision.展开更多
The fifth generation (5G) networks have been envisioned to support the explosive growth of data demand caused by the increasing traditional high-rate mobile users and the expected rise of interconnections between hu...The fifth generation (5G) networks have been envisioned to support the explosive growth of data demand caused by the increasing traditional high-rate mobile users and the expected rise of interconnections between human and things. To accommodate the ever-growing data traffic with scarce spectrum resources, cognitive radio (CR) is considered a promising technology to improve spectrum utilization. We study the power control problem for secondary users in an underlay CR network. Unlike most existing studies which simplify the problem by considering only a single primary user or channel, we investigate a more realistic scenario where multiple primary users share multiple channels with secondary users. We formulate the power control problem as a non-cooperative game with coupled constraints, where the Pareto optimality and achievable total throughput can be obtained by a Nash equilibrium (NE) solution. To achieve NE of the game, we first propose a projected gradient based dynamic model whose equilibrium points are equivalent to the NE of the original game, and then derive a centralized algorithm to solve the problem. Simulation results show that the convergence and effectiveness of our proposed solution, emphasizing the proposed algorithm, are competitive. Moreover, we demonstrate the robustness of our proposed solution as the network size increases.展开更多
基金supported by the National Natural Science Foundation of China(No. 71020107027) in part by the Doctoral Startup Fundation of Xinjiang University of Finace and Economics
文摘Steganalysis attack is to statistically estimate the embedded watermark in the watermarked multimedia,and the estimated watermark may be destroyed by the attacker.The existing methods of false negative probability,however,do not consider the influence of steganalysis attack.This paper proposed the game theory based false negative probability to estimate the impacts of steganalysis attack,as well as unintentional attack.Specifically,game theory was used to model the collision between the embedment and steganalysis attack,and derive the optimal building embedding/attacking strategy.Such optimal playing strategies devote to calculating the attacker destructed watermark,used for calculation of the game theory based false negative probability.The experimental results show that watermark detection reliability measured using our proposed method,in comparison,can better reflect the real scenario in which the embedded watermark undergoes unintentional attack and the attacker using steganalysis attack.This paper provides a foundation for investigating countermeasures of digital watermarking community against steganalysis attack.
基金This work has been partly supported by National Natural Science Foundation of China,National High Technology Research and Development Program of China (863 Program)
文摘Device-to-Device(D2D) communication has been proposed as a promising implementation of green communication to benefit the existed cellular network.In order to limit cross-tier interference while explore the gain of short-range communication,we devise a series of distributed power control(DPC) schemes for energy conservation(EC)and enhancement of radio resource utilization in the hybrid system.Firstly,a constrained opportunistic power control model is built up to take advantage of the interference avoidance methodology in the presence of service requirement and power constraint.Then,biasing scheme and admission control are added to evade ineffective power consumption and maintain the feasibility of the system.Upon feasibility,a non-cooperative game is further formulated to exploit the profit in EC with minor influence on spectral efficiency(SE).The convergence of the DPC schemes is validated and their performance is confirmed via simulation results.
基金supported under the National Basic Research Program(973) of China(Project Number: 2012CB315801)the National Natural Science Fund(Project Number:61300184)the fundamental research funds for the Central Universities(Project Number:2013RC0113)
文摘Recently, content-centric networking (CCN) has become a hot research topic for the diffusion of contents over the Internet. Most existing works on CCN focus on the improvement of network resource utilization. Consequently, the energy consumption aspect of CCN is largely ignored. In this paper, we propose a distributed energyefficient in-network caching scheme for CCN, where each content router only needs locally available information to make caching decisions considering both caching energy consumption and transport energy consumption. We formulate the in-network caching problem as a non-cooperative game. Through rigorous mathematical analysis, we prove that pure strategy Nash equilibria exist in the proposed scheme, and it always has a strategy profile that implements the socially optimal configuration, even if the touters are self-interested in nature. Simulation results are presented to show that the distributed solution is competitive to the centralized scheme, and has superior performance compared to other popular caching schemes in CCN. Besides, it exhibits a fast convergence speed when the capacity of content routers varies.
文摘In our society, it is a major issue to enhance cooperative behaviors. Without this, our society fall into social dilemma situations, and gets worse and worse. Such a situation in an organization leads to violation of social or organizational rules, and at the worst case it suffers from serious accidents or scandals. Therefore, it is important for organizational managers to make efforts and take measures to enhance cooperative behaviors. Although there seem to be many ways to constantly elicit cooperative behaviors, the punishment is one of the most effective measures for enhancing cooperation. This study focused on the effects of penalty and probability of the revelation of defection on the cooperation, and getting insight into how punishment strategy should be used to get rid of social dilemmas and enhance cooperation. This study conducted a simulation experiment to find the proper penal regulations condition that can suppress violations (defective behavior) in a 2-person prisoner's dilemma situation. The effects of probability of the revelation of defection and penalty to revelation on the cooperative behavior were identified with the interactive effect of both experimental factors. The defection (uncooperative behavior) decreased when the penalty to the defection was heavy and the probability of the revelation of defection was low than that when the penalty to the defection was light and the probability of the revelation of the defection was high.
文摘Using economics and game theory, two kinds of models have been proposed in this paper under the assumption that foreign and domestic firms behave under the condition of dynamic game of perfect information. One model is for calculating Anti-dumping rate which is obtained according to current regulations of Anti-dumping, but it is not optimal. The other is an optimal model of Anti-dumping which is obtained according to the maximum principle of domestic social welfare. Then, through the comparison of this two models in detail, several shortages have been revealed about Anti-dumping rate model based on current regulations of Anti-dumping. Finally, a suggestion is indicated that WTO and China should use the optimal model to calculate Anti-dumping rate.
基金the National Natural Science Foundation of China under Grants No.61272506,No.61170014,the Foundation of Key Program of MOE of China under Grant No.311007,the Natural Science Foundation of Beijing under Grant No.4102041
文摘In this study, aiming at the characteristics of randomness and dynamics in Wearable Audiooriented BodyNets (WA-BodyNets), stochastic differential game theory is applied to the investigation of the problem of transmitted power control inconsumer electronic devices. First, astochastic differential game model is proposed for non-cooperative decentralized uplink power control with a wisdom regulation factor over WA-BodyNets with a onehop star topology.This model aims to minimize the cost associated with the novel payoff function of a player, for which two cost functions are defined: functions of inherent power radiation and accumulated power radiation darmge. Second, the feedback Nash equilibrium solution of the proposed model and the constraint of the Quality of Service (QoS) requirement of the player based on the SIR threshold are derived by solving the Fleming-Bellman-Isaacs partial differential equations. Furthermore, the Markov property of the optimal feedback strategies in this model is verified.The simulation results show that the proposed game model is effective and feasible for controlling the transmitted power of WA-BodyNets.
基金supported by the National Natural Science Foundation of China (No.61074165 and No.61273064)Jilin Provincial Science & Technology Department Key Scientific and Technological Project (No.20140204034GX)Jilin Province Development and Reform Commission Project (No.2015Y043)
文摘Wireless Body Area Network(WBAN) is an emerging technology to provide real-time health monitoring and ubiquitous healthcare services. In many applications, multiple wireless body area networks have to coexist in a small area, resulting in serious inter-network interference. This not only reduces network reliability that is especially important in emergency medical applications, but also consumes more power of WBANs. In this paper, an inter-network interference mitigation approach based on a power control algorithm is proposed. Power control is modeled as a non-cooperative game, in which both inter-network interference and energy efficiency of WBANs are considered. The existence and uniqueness of Nash Equilibrium in the game are proved, and an optimal scheme based on best response is proposed to find its Nash Equilibrium. By coordinating the transmission power levels among networks under interference environment, the total system throughput can be increased with minimum power consumed. The effectiveness of the proposed method has been illustrated by simulation results, where the performance of the proposed approach is evaluated in terms of overall utility and power efficiency and convergence speed.
基金partially supported by the National Natural Science Foundation of China under Grant No.61172073the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University under Grant No.2012D19+1 种基金the Fundamental Research Funds for the Central Universities,Beijing Jiaotong University under Grant No.2013JBZ01the Program for New Century Excellent Talents in University of Ministry of Education of China under Grant No.NCET-12-0766
文摘This paper addresses the power con- trol problems of Cognitive Radio (CR) trader transmission power and interference tempera- ture constraints. First, we propose the interfer- ence constraint which ensures that the Quality of Service (QoS) standards for primary users is considered and a non-cooperative game power control model. Based on the proposed model, we developed a logical utility function based on the Signal-to-Interference-Noise Ratio (S/NR) and a novel algorithm network power control. that is suitable for CR Then, the existence and uniqueness of the Nash Equilibrium (NE) in our utility function are proved by the principle of game theory and the corresponding optimi- zations. Compared to traditional algorithms, the proposed one could converge to an NE in 3-5 iterative operations by setting an appropriate pricing factor. Finally, simulation results ver- ified the stability and superiority of the novel algorithm in flat-fading channel environments.
文摘Accurate prediction of wind power is significant for power system dispatching as well as safe and stable operation. By means of BP neural network, radial basis function neural network and support vector machine, a new combined method of wind power prediction based on cooperative game theory is proposed. In the method, every single forecasting model is regarded as a member of the cooperative games, and the sum of square error of combination forecasting is taken as the result of cooperation. The result is divided among the members according to Shapley values, and then weights of combination forecasting can be obtained. Application results in an actual wind farm show that the proposed method can effectively improve prediction precision.
基金Project supported by the National Natural Science Foundation of China(Nos.61227801 and 61629101)Huawei Communications Technology Lab,Chinathe Open Research Foundation of Xi’an Jiaotong University,China(No.sklms2015015)
文摘The fifth generation (5G) networks have been envisioned to support the explosive growth of data demand caused by the increasing traditional high-rate mobile users and the expected rise of interconnections between human and things. To accommodate the ever-growing data traffic with scarce spectrum resources, cognitive radio (CR) is considered a promising technology to improve spectrum utilization. We study the power control problem for secondary users in an underlay CR network. Unlike most existing studies which simplify the problem by considering only a single primary user or channel, we investigate a more realistic scenario where multiple primary users share multiple channels with secondary users. We formulate the power control problem as a non-cooperative game with coupled constraints, where the Pareto optimality and achievable total throughput can be obtained by a Nash equilibrium (NE) solution. To achieve NE of the game, we first propose a projected gradient based dynamic model whose equilibrium points are equivalent to the NE of the original game, and then derive a centralized algorithm to solve the problem. Simulation results show that the convergence and effectiveness of our proposed solution, emphasizing the proposed algorithm, are competitive. Moreover, we demonstrate the robustness of our proposed solution as the network size increases.