Resonance Raman spectra of aggregated meso-tetra(4-pyridinium)porphyrin diacid (H8TPyP^6+) were studied with excitation near the exciton absorption bands of 470 nm. The UV-Vis absorption and resonance light scatt...Resonance Raman spectra of aggregated meso-tetra(4-pyridinium)porphyrin diacid (H8TPyP^6+) were studied with excitation near the exciton absorption bands of 470 nm. The UV-Vis absorption and resonance light scattering spectra of HsTPyP^6+ monomers and aggregates were also measured. The observed Raman bands of monomeric and aggregated HsTPyP^6+ were assigned on the basis of the observed deuteration shifts and by comparing with the Raman spectra of analogous porphyrin diacids. Aggregation causes moderate downshifts (2-6 cm^-1) for high-frequency modes involving the in-plane CC/CN stretches of the porphyrin core and a dramatic upshift (12 cm^-1) for the out-of-plane saddling mode of the porphyrin ring. The structural changes induced by aggregation and the possible hydrogen bonding interaction between the HsTPyP^6+ molecules in the aggregate are discussed based on the spectral observations.展开更多
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.20473078) and the Specialized Research Fund for the Doctoral Program of Higher Education (No.200803580022).
文摘Resonance Raman spectra of aggregated meso-tetra(4-pyridinium)porphyrin diacid (H8TPyP^6+) were studied with excitation near the exciton absorption bands of 470 nm. The UV-Vis absorption and resonance light scattering spectra of HsTPyP^6+ monomers and aggregates were also measured. The observed Raman bands of monomeric and aggregated HsTPyP^6+ were assigned on the basis of the observed deuteration shifts and by comparing with the Raman spectra of analogous porphyrin diacids. Aggregation causes moderate downshifts (2-6 cm^-1) for high-frequency modes involving the in-plane CC/CN stretches of the porphyrin core and a dramatic upshift (12 cm^-1) for the out-of-plane saddling mode of the porphyrin ring. The structural changes induced by aggregation and the possible hydrogen bonding interaction between the HsTPyP^6+ molecules in the aggregate are discussed based on the spectral observations.