An interval Kalman filter (IKF) algorithm based on the interval conditional expectation is applied to an integrated global positioning system/inertial navigation system (GPS/INS). Because the IKF algorithm is applica...An interval Kalman filter (IKF) algorithm based on the interval conditional expectation is applied to an integrated global positioning system/inertial navigation system (GPS/INS). Because the IKF algorithm is applicable only to linear interval systems, the extended interval Kalman filter (EIKF) algorithm for non linear integrated systems is developed. A high dynamic aircraft trajectory is designed to test the algorithm developed. The results of computer simulation indicate that the EIKF algorithm is consistent with the traditional SKF scheme, and is also effective for uncertain non linear integrated system.展开更多
A land vehicle tracking and monitoring system based on the integration of differential global position system (DGPS), dead-reckoning (DR), and map matched technology is studied. In this paper, from the economic point ...A land vehicle tracking and monitoring system based on the integration of differential global position system (DGPS), dead-reckoning (DR), and map matched technology is studied. In this paper, from the economic point of view, a new scheme using the one-way directional communication link, is presented. Moreover, 8-state Kalman filter is proposed for integrated DGPS/DR system. When field tests are carried out using two C/A code GARMIN GPS receiver, the positioning accuracy less than 5 m (1σ) is achieved.展开更多
A fast U D factorization based Kalman filter for the 21 state integrated global positioning system and inertial navigation system (GPS/INS) is developed from the point of engineering implementation. The conventio...A fast U D factorization based Kalman filter for the 21 state integrated global positioning system and inertial navigation system (GPS/INS) is developed from the point of engineering implementation. The conventional Kalman filter is widely used for integration of GPS/INS, however, due to the model and numerical computation errors, the Kalman filter may diverge in engineering implementation. In order to solve this problem, an extended Kalman filter based on the U D factorization is proposed. Moreover, the high order integrated system suffers from the problem of long computation time, leading to difficulties in real time applications. An algorithmic approach is developed to improve the computational speed. A typical aircraft trajectory is simulated to compare the improvement in the computational speed and the navigation accuracy using the conventional Kalman filter and the fast Kalman filter based on the U D factorization. The results indicate that the methods proposed in this paper are very effective in overcoming these problems for the high dynamic integrated GPS/INS system.展开更多
An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps. A local frame of reference was established periodically at the position of the robot, and then the ob...An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps. A local frame of reference was established periodically at the position of the robot, and then the observations of the robot and landmarks were fused into the global frame of reference. Because of the independence of the local map, the approach does not cumulate the estimate and calculation errors which are produced by SLAM using Kalman filter directly. At the same time, it reduces the computational complexity. This method is proven correct and feasible in simulation experiments.展开更多
When using global positioning system/BeiDou navigation satellite(GPS/BDS)dual-mode navigation system to locate a train,Kalman filter that is used to calculate train position has to be adjusted according to the feature...When using global positioning system/BeiDou navigation satellite(GPS/BDS)dual-mode navigation system to locate a train,Kalman filter that is used to calculate train position has to be adjusted according to the features of the dual-mode observation.Due to multipath effect,positioning accuracy of present Kalman filter algorithm is really low.To solve this problem,a chaotic immune-vaccine particle swarm optimization_extended Kalman filter(CIPSO_EKF)algorithm is proposed to improve the output accuracy of the Kalman filter.By chaotic mapping and immunization,the particle swarm algorithm is first optimized,and then the optimized particle swarm algorithm is used to optimize the observation error covariance matrix.The optimal parameters are provided to the EKF,which can effectively reduce the impact of the observation value oscillation caused by multipath effect on positioning accuracy.At the same time,the train positioning results of EKF and CIPSO_EKF algorithms are compared.The eastward position errors and velocity errors show that CIPSO_EKF algorithm has faster convergence speed and higher real-time performance,which can effectively suppress interference and improve positioning accuracy.展开更多
The observed images of the asteroid and the asteroid reference images are used to obtain the probe-to-asteroid direction and the location of the limb features of the asteroid in the inertial coordinate. These informa-...The observed images of the asteroid and the asteroid reference images are used to obtain the probe-to-asteroid direction and the location of the limb features of the asteroid in the inertial coordinate. These informa-tion in combination with the shape model of the asteroid and attitude information of the probe are utilized to ob-tain the position of the probe. The position information is then input to the UKF which determines the real-timeorbit of the probe. Finally, the autonomous orbit determination algorithm is validated using digital simulation.The determination of orbit using UKF is compared with that using extended Kalman filter (EKF), and the resultshows that UKF is superior to EKF.展开更多
Let X be an RD-space. In this paper, the authors establish the boundedness of the commutator Tbf = bTf-T(bf) on Lp , p∈(1,∞), where T is a Calderón-Zygmund operator related to the admissible function ρ and b∈...Let X be an RD-space. In this paper, the authors establish the boundedness of the commutator Tbf = bTf-T(bf) on Lp , p∈(1,∞), where T is a Calderón-Zygmund operator related to the admissible function ρ and b∈BMOθ(X)BMO(X). Moreover, they prove that Tb is bounded from the Hardy space H1ρ(X) into the weak Lebesgue space L1weak(X). This can be used to deal with the Schrdinger operators and Schrdinger type operators on the Euclidean space Rn and the sub-Laplace Schrdinger operators on the stratified Lie group G.展开更多
文摘An interval Kalman filter (IKF) algorithm based on the interval conditional expectation is applied to an integrated global positioning system/inertial navigation system (GPS/INS). Because the IKF algorithm is applicable only to linear interval systems, the extended interval Kalman filter (EIKF) algorithm for non linear integrated systems is developed. A high dynamic aircraft trajectory is designed to test the algorithm developed. The results of computer simulation indicate that the EIKF algorithm is consistent with the traditional SKF scheme, and is also effective for uncertain non linear integrated system.
文摘A land vehicle tracking and monitoring system based on the integration of differential global position system (DGPS), dead-reckoning (DR), and map matched technology is studied. In this paper, from the economic point of view, a new scheme using the one-way directional communication link, is presented. Moreover, 8-state Kalman filter is proposed for integrated DGPS/DR system. When field tests are carried out using two C/A code GARMIN GPS receiver, the positioning accuracy less than 5 m (1σ) is achieved.
文摘A fast U D factorization based Kalman filter for the 21 state integrated global positioning system and inertial navigation system (GPS/INS) is developed from the point of engineering implementation. The conventional Kalman filter is widely used for integration of GPS/INS, however, due to the model and numerical computation errors, the Kalman filter may diverge in engineering implementation. In order to solve this problem, an extended Kalman filter based on the U D factorization is proposed. Moreover, the high order integrated system suffers from the problem of long computation time, leading to difficulties in real time applications. An algorithmic approach is developed to improve the computational speed. A typical aircraft trajectory is simulated to compare the improvement in the computational speed and the navigation accuracy using the conventional Kalman filter and the fast Kalman filter based on the U D factorization. The results indicate that the methods proposed in this paper are very effective in overcoming these problems for the high dynamic integrated GPS/INS system.
基金Project(60234030) supported by the National Natural Science Foundation of China project(A1420060159) supported by the National Basic Research
文摘An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps. A local frame of reference was established periodically at the position of the robot, and then the observations of the robot and landmarks were fused into the global frame of reference. Because of the independence of the local map, the approach does not cumulate the estimate and calculation errors which are produced by SLAM using Kalman filter directly. At the same time, it reduces the computational complexity. This method is proven correct and feasible in simulation experiments.
基金National Natural Science Foundation of China(Nos.61662070,61363059)Youth Science Fund Project of Lanzhou Jiaotong University(No.2018036)。
文摘When using global positioning system/BeiDou navigation satellite(GPS/BDS)dual-mode navigation system to locate a train,Kalman filter that is used to calculate train position has to be adjusted according to the features of the dual-mode observation.Due to multipath effect,positioning accuracy of present Kalman filter algorithm is really low.To solve this problem,a chaotic immune-vaccine particle swarm optimization_extended Kalman filter(CIPSO_EKF)algorithm is proposed to improve the output accuracy of the Kalman filter.By chaotic mapping and immunization,the particle swarm algorithm is first optimized,and then the optimized particle swarm algorithm is used to optimize the observation error covariance matrix.The optimal parameters are provided to the EKF,which can effectively reduce the impact of the observation value oscillation caused by multipath effect on positioning accuracy.At the same time,the train positioning results of EKF and CIPSO_EKF algorithms are compared.The eastward position errors and velocity errors show that CIPSO_EKF algorithm has faster convergence speed and higher real-time performance,which can effectively suppress interference and improve positioning accuracy.
文摘The observed images of the asteroid and the asteroid reference images are used to obtain the probe-to-asteroid direction and the location of the limb features of the asteroid in the inertial coordinate. These informa-tion in combination with the shape model of the asteroid and attitude information of the probe are utilized to ob-tain the position of the probe. The position information is then input to the UKF which determines the real-timeorbit of the probe. Finally, the autonomous orbit determination algorithm is validated using digital simulation.The determination of orbit using UKF is compared with that using extended Kalman filter (EKF), and the resultshows that UKF is superior to EKF.
基金National Natural Science Foundation of China (Grant Nos. 10901018 and 11001002)the Shanghai Leading Academic Discipline Project (Grant No. J50101)the Fundamental Research Funds for the Central Universities
文摘Let X be an RD-space. In this paper, the authors establish the boundedness of the commutator Tbf = bTf-T(bf) on Lp , p∈(1,∞), where T is a Calderón-Zygmund operator related to the admissible function ρ and b∈BMOθ(X)BMO(X). Moreover, they prove that Tb is bounded from the Hardy space H1ρ(X) into the weak Lebesgue space L1weak(X). This can be used to deal with the Schrdinger operators and Schrdinger type operators on the Euclidean space Rn and the sub-Laplace Schrdinger operators on the stratified Lie group G.