The orchards usually have rough terrain,dense tree canopy and weeds.It is hard to use GNSS for autonomous navigation in orchard due to signal occlusion,multipath effect,and radio frequency interference.To achieve auto...The orchards usually have rough terrain,dense tree canopy and weeds.It is hard to use GNSS for autonomous navigation in orchard due to signal occlusion,multipath effect,and radio frequency interference.To achieve autonomous navigation in orchard,a visual navigation method based on multiple images at different shooting angles is proposed in this paper.A dynamic image capturing device is designed for camera installation and multiple images can be shot at different angles.Firstly,the obtained orchard images are classified into sky and soil detection stage.Each image is transformed to HSV space and initially segmented into sky,canopy and soil regions by median filtering and morphological processing.Secondly,the sky and soil regions are extracted by the maximum connected region algorithm,and the region edges are detected and filtered by the Canny operator.Thirdly,the navigation line in the current frame is extracted by fitting the region coordinate points.Then the dynamic weighted filtering algorithm is used to extract the navigation line for the soil and sky detection stage,respectively,and the navigation line for the sky detection stage is mirrored to the soil region.Finally,the Kalman filter algorithm is used to fuse and extract the final navigation path.The test results on 200 images show that the accuracy of visual navigation path fitting is 95.5%,and single frame image processing costs 60 ms,which meets the real-time and robustness requirements of navigation.The visual navigation experiments in Camellia oleifera orchard show that when the driving speed is 0.6 m/s,the maximum tracking offset of visual navigation in weed-free and weedy environments is 0.14 m and 0.24 m,respectively,and the RMSE is 30 mm and 55 mm,respectively.展开更多
A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracki...A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.展开更多
This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver d...This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver data. Emphases are placed on the modeling of system errors and implementation of the integrated system. Both loose and tightly coupled GPS/INS integrated in schemes are analyzed. On the basis of our experience accumulated in the research of GPS/INS for many years, the GPS/INS integrated navigation developing system is developed. It can be put into efficient and economic use in the study and design of integrated navigation system. It plays an important role in the aeronautical and astronautical fields in China. This system is not only a computer aided design software but also a semi physical simulation system by obtaining real INS and GPS receiver data. So the key software unit of the developing system could be conveniently transferred into practical engineering software in actual hardware integrated system. The application of this system shows that the design ideas and integrated scheme of this development system are successful, and can achieve good navigation result.展开更多
An interval Kalman filter (IKF) algorithm based on the interval conditional expectation is applied to an integrated global positioning system/inertial navigation system (GPS/INS). Because the IKF algorithm is applica...An interval Kalman filter (IKF) algorithm based on the interval conditional expectation is applied to an integrated global positioning system/inertial navigation system (GPS/INS). Because the IKF algorithm is applicable only to linear interval systems, the extended interval Kalman filter (EIKF) algorithm for non linear integrated systems is developed. A high dynamic aircraft trajectory is designed to test the algorithm developed. The results of computer simulation indicate that the EIKF algorithm is consistent with the traditional SKF scheme, and is also effective for uncertain non linear integrated system.展开更多
An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for t...An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for the alignment in the moving state is established and the observability of the system is analyzed. The results show that the SINS can successfully achieve the precision alignment in 10 min when the vehicle is moving toward the prearranged place after its staying for several seconds to perform the coarse alignment. The precision of alignment can also be improved in the moving state compared with that in the static state.展开更多
A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are sele...A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are selected as the state variables, and the rotor speed as an estimated parameter is regarded as an augmented state variable. The algorithm with reduced order decreases the computational complexity and makes the proposed estimator feasible to be implemented in real time. The simulation results show high accuracy of the estimation algorithm and good performance of speed control, and verify the usefulness of the proposed algorithm.展开更多
In order to measure the parameters of flight rocket by using radar,rocket impact point was estimated accurately for rocket trajectory correction.The Kalman filter with adaptive filter gain matrix was adopted.According...In order to measure the parameters of flight rocket by using radar,rocket impact point was estimated accurately for rocket trajectory correction.The Kalman filter with adaptive filter gain matrix was adopted.According to the particle trajectory model,the adaptive Kalman filter trajectory model was constructed for removing and filtering the outliers of the parameters during a section of flight detected by three-dimensional data radar and the rocket impact point was extrapolated.The results of numerical simulation show that the outliers and noise in trajectory measurement signal can be removed effectively by using the adaptive Kalman filter and the filter variance can converge in a short period of time.Based on the relation of filtering time and impact point estimation error,choosing the filtering time of 8-10 scan get the minimum estimation error of impact point.展开更多
To find an effective method to estimate and remove the registration error in asynchronous multisensor system, Kalman filtering technique and least squares approach have been proposed to estimate and remove sensor bia...To find an effective method to estimate and remove the registration error in asynchronous multisensor system, Kalman filtering technique and least squares approach have been proposed to estimate and remove sensor bias and sensor frame tilt errors in multisensor systems with asynchronous data. Simulation results is presented to demonstrate the performance of these approaches. The least squares approach can compress measurements to any time. The Kalman filter algorithm can detect registration errors and use the information to converge tracks from independent sensors. This is particularly important if the data from the sensors are to be fused.展开更多
Aim To find an effective method to remove the registration error in multi-sensor systems. Methods A Kalman filtering technique was proposed to estimate and remove sensor bias and sensor fare tilt errors in multisenso...Aim To find an effective method to remove the registration error in multi-sensor systems. Methods A Kalman filtering technique was proposed to estimate and remove sensor bias and sensor fare tilt errors in multisensor systems with a moving platform. Results Simulation results are presented to demonstrate the performance of the approach. Conclusion The Kalman filter algorithm am detect registration errors and use this information to converge tracks from independent sensors. This is particularly important if the data from the sensors are to fused.展开更多
The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The meas...The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The measurement information fusion technology is studied by introducing the FSINS/DR/Beidou double-star integrated scheme. Several specific methods for the information fusion are discussed, and a Kalman filter is designed for the information fusion. Experimental results show that the design of the integrated scheme can improve the positioning accuracy of the navigation system.展开更多
A land vehicle tracking and monitoring system based on the integration of differential global position system (DGPS), dead-reckoning (DR), and map matched technology is studied. In this paper, from the economic point ...A land vehicle tracking and monitoring system based on the integration of differential global position system (DGPS), dead-reckoning (DR), and map matched technology is studied. In this paper, from the economic point of view, a new scheme using the one-way directional communication link, is presented. Moreover, 8-state Kalman filter is proposed for integrated DGPS/DR system. When field tests are carried out using two C/A code GARMIN GPS receiver, the positioning accuracy less than 5 m (1σ) is achieved.展开更多
Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightl...Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightly-coupled integration based on the Kalman filter (KF). When the WSN is available, the difference between the distances from the blind node(BN) to the reference nodes (RNs) measured by the INS and those measured by the WSN are used as measurement information for the KF due to its better observability and independence, which can effectively improve the accuracy of the KF. Simulations show that the proposed approach reduces the mean error of the position by about 50% compared with loosely-coupled integration, while the mean error of the velocity is a little higher than that of loosely-coupled integration.展开更多
A fast U D factorization based Kalman filter for the 21 state integrated global positioning system and inertial navigation system (GPS/INS) is developed from the point of engineering implementation. The conventio...A fast U D factorization based Kalman filter for the 21 state integrated global positioning system and inertial navigation system (GPS/INS) is developed from the point of engineering implementation. The conventional Kalman filter is widely used for integration of GPS/INS, however, due to the model and numerical computation errors, the Kalman filter may diverge in engineering implementation. In order to solve this problem, an extended Kalman filter based on the U D factorization is proposed. Moreover, the high order integrated system suffers from the problem of long computation time, leading to difficulties in real time applications. An algorithmic approach is developed to improve the computational speed. A typical aircraft trajectory is simulated to compare the improvement in the computational speed and the navigation accuracy using the conventional Kalman filter and the fast Kalman filter based on the U D factorization. The results indicate that the methods proposed in this paper are very effective in overcoming these problems for the high dynamic integrated GPS/INS system.展开更多
To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm i...To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.展开更多
Synthetic aperture radar (SAR) is theoretically based on uniform rectilinear motion. But in real situations, the flight cannot be kept in a uniform rectilinear motion due to many factors. Therefore, the motion compens...Synthetic aperture radar (SAR) is theoretically based on uniform rectilinear motion. But in real situations, the flight cannot be kept in a uniform rectilinear motion due to many factors. Therefore, the motion compensation is needed to achieve the high-resolution image. This paper proposes an improved motion information sensor (MIS)-based on global navigation statellite system (GNSS) and strapdown inertial navigation system (SINS) for SAR motion compensation. MIS can provide the long-term absolute accuracy, and the short-term high relative accuracy during SAR imaging. Many issues related to MIS, such as system design, error models and navigation algorithms, are stressed. Experimental results show that MIS can provide accurate navigation information (position, velocity and attitude) to meet the requirements of SAR motion compensation. Especially, MIS is suitable for the case: the accuracy of airplane master inertial navigation system is too low or not configured.展开更多
In order to enhance the location estimation performance of mobile station(MS)tracking and positioning, a new method of mobile location optimal estimation based on the federated filtering structure and the simplified...In order to enhance the location estimation performance of mobile station(MS)tracking and positioning, a new method of mobile location optimal estimation based on the federated filtering structure and the simplified unscented Kalman filter (UKF) is presented. The proposed algorithm uses the Singer mobile statement model as the reference system, and the simplified UKF as the subfilters. The subfilters receive the two groups of independently detected time difference of arrival (TDOA) measurement inputs and Doppler measurement inputs, and produce local estimation outputs to the main estimator. Then the main estimator performs the optimal fusion of the local estimation outputs according to the scalar weighted rule, and a global optimal or suboptimal estimation result is achieved. Finally the main estimator gives feedback and reset information to the subfilters and the reference system for next step estimation. In the simulations, the estimation performance of the proposed algorithm is evaluated and compared with the simplified UKF method with TDOA or Doppler measurement alone. The simulation results demonstrate that the proposed algorithm can effectively reduce the location estimation error and variance of the MS, and has favorable performance in both root mean square error(RMSE) and mean error cumulative distribution function(CDF).展开更多
基金National Key Research and Development Program of China(2022YFD2202103)National Natural Science Foundation of China(31971798)+2 种基金Zhejiang Provincial Key Research&Development Plan(2023C02049、2023C02053)SNJF Science and Technology Collaborative Program of Zhejiang Province(2022SNJF017)Hangzhou Agricultural and Social Development Research Project(202203A03)。
文摘The orchards usually have rough terrain,dense tree canopy and weeds.It is hard to use GNSS for autonomous navigation in orchard due to signal occlusion,multipath effect,and radio frequency interference.To achieve autonomous navigation in orchard,a visual navigation method based on multiple images at different shooting angles is proposed in this paper.A dynamic image capturing device is designed for camera installation and multiple images can be shot at different angles.Firstly,the obtained orchard images are classified into sky and soil detection stage.Each image is transformed to HSV space and initially segmented into sky,canopy and soil regions by median filtering and morphological processing.Secondly,the sky and soil regions are extracted by the maximum connected region algorithm,and the region edges are detected and filtered by the Canny operator.Thirdly,the navigation line in the current frame is extracted by fitting the region coordinate points.Then the dynamic weighted filtering algorithm is used to extract the navigation line for the soil and sky detection stage,respectively,and the navigation line for the sky detection stage is mirrored to the soil region.Finally,the Kalman filter algorithm is used to fuse and extract the final navigation path.The test results on 200 images show that the accuracy of visual navigation path fitting is 95.5%,and single frame image processing costs 60 ms,which meets the real-time and robustness requirements of navigation.The visual navigation experiments in Camellia oleifera orchard show that when the driving speed is 0.6 m/s,the maximum tracking offset of visual navigation in weed-free and weedy environments is 0.14 m and 0.24 m,respectively,and the RMSE is 30 mm and 55 mm,respectively.
文摘A polynomial model, time origin shifting model(TOSM, is used to describe the trajectory of a moving target .Based on TOSM, a recursive laeast squares(RLS) algorithm with varied forgetting factor is derived for tracking of a non-maneuvering target. In order to apply this algorithm to maneuvering targets tracking ,a tracking signal is performed on-line to determine what kind of TOSm will be in effect to track a target with different dynamics. An effective multiple model least squares filtering and forecasting method dadpted to real tracking of a maneuvering target is formulated. The algorithm is computationally more effcient than Kalman filter and the percentage improvement from simulations show both of them are considerably alike to some extent.
文摘This paper deals with the research of the GPS/INS integrated navigation system applying Extended Kalman Filter, which involves integrated principles, scheme and technology of combining with real INS and GPS receiver data. Emphases are placed on the modeling of system errors and implementation of the integrated system. Both loose and tightly coupled GPS/INS integrated in schemes are analyzed. On the basis of our experience accumulated in the research of GPS/INS for many years, the GPS/INS integrated navigation developing system is developed. It can be put into efficient and economic use in the study and design of integrated navigation system. It plays an important role in the aeronautical and astronautical fields in China. This system is not only a computer aided design software but also a semi physical simulation system by obtaining real INS and GPS receiver data. So the key software unit of the developing system could be conveniently transferred into practical engineering software in actual hardware integrated system. The application of this system shows that the design ideas and integrated scheme of this development system are successful, and can achieve good navigation result.
文摘An interval Kalman filter (IKF) algorithm based on the interval conditional expectation is applied to an integrated global positioning system/inertial navigation system (GPS/INS). Because the IKF algorithm is applicable only to linear interval systems, the extended interval Kalman filter (EIKF) algorithm for non linear integrated systems is developed. A high dynamic aircraft trajectory is designed to test the algorithm developed. The results of computer simulation indicate that the EIKF algorithm is consistent with the traditional SKF scheme, and is also effective for uncertain non linear integrated system.
文摘An initial alignment technique for the strapdown inertial navigation system (SINS) of vehicles in the moving state is researched. By selecting an odometer as the system’s external sensor, the mathematical model for the alignment in the moving state is established and the observability of the system is analyzed. The results show that the SINS can successfully achieve the precision alignment in 10 min when the vehicle is moving toward the prearranged place after its staying for several seconds to perform the coarse alignment. The precision of alignment can also be improved in the moving state compared with that in the static state.
文摘A speed sensorless vector control system of induction motor with estimated rotor speed and rotor flux using a new reduced order extended Kalman filter is proposed. With this method, two rotor flux components are selected as the state variables, and the rotor speed as an estimated parameter is regarded as an augmented state variable. The algorithm with reduced order decreases the computational complexity and makes the proposed estimator feasible to be implemented in real time. The simulation results show high accuracy of the estimation algorithm and good performance of speed control, and verify the usefulness of the proposed algorithm.
文摘In order to measure the parameters of flight rocket by using radar,rocket impact point was estimated accurately for rocket trajectory correction.The Kalman filter with adaptive filter gain matrix was adopted.According to the particle trajectory model,the adaptive Kalman filter trajectory model was constructed for removing and filtering the outliers of the parameters during a section of flight detected by three-dimensional data radar and the rocket impact point was extrapolated.The results of numerical simulation show that the outliers and noise in trajectory measurement signal can be removed effectively by using the adaptive Kalman filter and the filter variance can converge in a short period of time.Based on the relation of filtering time and impact point estimation error,choosing the filtering time of 8-10 scan get the minimum estimation error of impact point.
文摘To find an effective method to estimate and remove the registration error in asynchronous multisensor system, Kalman filtering technique and least squares approach have been proposed to estimate and remove sensor bias and sensor frame tilt errors in multisensor systems with asynchronous data. Simulation results is presented to demonstrate the performance of these approaches. The least squares approach can compress measurements to any time. The Kalman filter algorithm can detect registration errors and use the information to converge tracks from independent sensors. This is particularly important if the data from the sensors are to be fused.
文摘Aim To find an effective method to remove the registration error in multi-sensor systems. Methods A Kalman filtering technique was proposed to estimate and remove sensor bias and sensor fare tilt errors in multisensor systems with a moving platform. Results Simulation results are presented to demonstrate the performance of the approach. Conclusion The Kalman filter algorithm am detect registration errors and use this information to converge tracks from independent sensors. This is particularly important if the data from the sensors are to fused.
文摘The fiber strapdown inertial navigation system (FSINS)/dead reckoning (DR)/Beidou double-star integrated navigation scheme is proposed aiming at the need of land fighting-vehicle independence positioning. The measurement information fusion technology is studied by introducing the FSINS/DR/Beidou double-star integrated scheme. Several specific methods for the information fusion are discussed, and a Kalman filter is designed for the information fusion. Experimental results show that the design of the integrated scheme can improve the positioning accuracy of the navigation system.
文摘A land vehicle tracking and monitoring system based on the integration of differential global position system (DGPS), dead-reckoning (DR), and map matched technology is studied. In this paper, from the economic point of view, a new scheme using the one-way directional communication link, is presented. Moreover, 8-state Kalman filter is proposed for integrated DGPS/DR system. When field tests are carried out using two C/A code GARMIN GPS receiver, the positioning accuracy less than 5 m (1σ) is achieved.
基金The National Basic Research Program of China(973 Program)(No.2009CB724002)the National Natural Science Foundation of China(No.50975049)+3 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20110092110039)the Aviation Science Foundation(No.20090869008)the Six Peak Talents Foundation in Jiangsu Province(No.2008143)Program of Scientific Innovation Research of College Graduate in Jiangsu Province(No.CXLX_0101)
文摘Aiming at the problem of poor observability of measurement information in the loosely-coupled integration of the inertial navigation system (INS) and the wireless sensor network (WSN), this paper presents a tightly-coupled integration based on the Kalman filter (KF). When the WSN is available, the difference between the distances from the blind node(BN) to the reference nodes (RNs) measured by the INS and those measured by the WSN are used as measurement information for the KF due to its better observability and independence, which can effectively improve the accuracy of the KF. Simulations show that the proposed approach reduces the mean error of the position by about 50% compared with loosely-coupled integration, while the mean error of the velocity is a little higher than that of loosely-coupled integration.
文摘A fast U D factorization based Kalman filter for the 21 state integrated global positioning system and inertial navigation system (GPS/INS) is developed from the point of engineering implementation. The conventional Kalman filter is widely used for integration of GPS/INS, however, due to the model and numerical computation errors, the Kalman filter may diverge in engineering implementation. In order to solve this problem, an extended Kalman filter based on the U D factorization is proposed. Moreover, the high order integrated system suffers from the problem of long computation time, leading to difficulties in real time applications. An algorithmic approach is developed to improve the computational speed. A typical aircraft trajectory is simulated to compare the improvement in the computational speed and the navigation accuracy using the conventional Kalman filter and the fast Kalman filter based on the U D factorization. The results indicate that the methods proposed in this paper are very effective in overcoming these problems for the high dynamic integrated GPS/INS system.
文摘To avoid missing track caused by the target maneuvers in automatic target tracking system, a new maneuvering target tracking technique called threshold interacting multiple model (TIMM) is proposed. This algorithm is based on the interacting multiple model (IMM) method and applies a threshold controller to improve tracking accuracy. It is also applicable to other advanced algorithms of IMM. In this research, we also compare the position and velocity root mean square (RMS) errors of TIMM and IMM algorithms with two different examples. Simulation results show that the TIMM algorithm is superior to the traditional IMM alzorithm in estimation accuracy.
文摘Synthetic aperture radar (SAR) is theoretically based on uniform rectilinear motion. But in real situations, the flight cannot be kept in a uniform rectilinear motion due to many factors. Therefore, the motion compensation is needed to achieve the high-resolution image. This paper proposes an improved motion information sensor (MIS)-based on global navigation statellite system (GNSS) and strapdown inertial navigation system (SINS) for SAR motion compensation. MIS can provide the long-term absolute accuracy, and the short-term high relative accuracy during SAR imaging. Many issues related to MIS, such as system design, error models and navigation algorithms, are stressed. Experimental results show that MIS can provide accurate navigation information (position, velocity and attitude) to meet the requirements of SAR motion compensation. Especially, MIS is suitable for the case: the accuracy of airplane master inertial navigation system is too low or not configured.
基金The Cultivation Fund of the Key Scientific and Technical Innovation Project of Ministry of Education of China(No.706028)
文摘In order to enhance the location estimation performance of mobile station(MS)tracking and positioning, a new method of mobile location optimal estimation based on the federated filtering structure and the simplified unscented Kalman filter (UKF) is presented. The proposed algorithm uses the Singer mobile statement model as the reference system, and the simplified UKF as the subfilters. The subfilters receive the two groups of independently detected time difference of arrival (TDOA) measurement inputs and Doppler measurement inputs, and produce local estimation outputs to the main estimator. Then the main estimator performs the optimal fusion of the local estimation outputs according to the scalar weighted rule, and a global optimal or suboptimal estimation result is achieved. Finally the main estimator gives feedback and reset information to the subfilters and the reference system for next step estimation. In the simulations, the estimation performance of the proposed algorithm is evaluated and compared with the simplified UKF method with TDOA or Doppler measurement alone. The simulation results demonstrate that the proposed algorithm can effectively reduce the location estimation error and variance of the MS, and has favorable performance in both root mean square error(RMSE) and mean error cumulative distribution function(CDF).