期刊文献+
共找到572篇文章
< 1 2 29 >
每页显示 20 50 100
温度集合预报的类卡尔曼滤波自适应订正方法在海南省东北部的应用 被引量:3
1
作者 吴婵 吴林训 +1 位作者 黄明旺 冯志挺 《广东气象》 2018年第4期43-47,共5页
利用类卡尔曼滤波的自适应业务订正方法,对2010—2016年欧洲中心数值模式集合预报产品在海南东北部地区的温度预报进行订正分析,结果表明:1)数值模式集合预报较控制模式和业务模式在最高、最低温度预报上有准确率更高和时效更长的优势;2... 利用类卡尔曼滤波的自适应业务订正方法,对2010—2016年欧洲中心数值模式集合预报产品在海南东北部地区的温度预报进行订正分析,结果表明:1)数值模式集合预报较控制模式和业务模式在最高、最低温度预报上有准确率更高和时效更长的优势;2)对类卡尔曼滤波自适应订正方法中权重系数的选取进行了试验,从而通过在不同时效选择最优的权重系数对该方法进行本地化改进;3)对优化后的订正方法进行检验,结果显示有效地提高最高、最低温度预报准确率,各时效温度平均绝对误差有效下降0.5℃,接近甚至超过主观预报水平;同时可以改善模式对高温事件的预报性能,提高高温事件概率预报的Brier评分和技巧评分。 展开更多
关键词 应用气象 ECMWF集合预报 卡尔曼滤波自适应 气温预报 高温 概率预报 海南省
下载PDF
自适应双层无迹卡尔曼滤波的车辆状态估计
2
作者 徐劲力 张光俊 《重庆理工大学学报(自然科学)》 CAS 北大核心 2024年第7期29-36,共8页
针对在车辆行驶状态估计中存在估计不准确、鲁棒性较差以及系统噪声不确定等问题,提出一种将双层无迹卡尔曼滤波(DLUKF)与改进的Sage-Husa算法相结合的自适应双层无迹卡尔曼滤波算法(ADLUKF)作为车辆行驶状态的估计器,再结合三自由度汽... 针对在车辆行驶状态估计中存在估计不准确、鲁棒性较差以及系统噪声不确定等问题,提出一种将双层无迹卡尔曼滤波(DLUKF)与改进的Sage-Husa算法相结合的自适应双层无迹卡尔曼滤波算法(ADLUKF)作为车辆行驶状态的估计器,再结合三自由度汽车模型对车辆行驶的横摆角速度和质心侧偏角进行估计。通过改进的Sage-Husa滤波器对系统过程噪声和测量噪声进行动态调整,进而减少车辆行驶状态估计的误差。应用Carsim与Matlab/Simulink进行联合仿真以及实车试验数据来验证该估计器的有效性,并与无迹卡尔曼滤波(UKF)算法进行对比。结果表明:与UKF算法相比,该算法有效提高了车辆行驶的横摆角速度和质心侧偏角的估计精度和稳定性。 展开更多
关键词 自适应双层无迹卡尔曼滤波 Sage-Husa 参数估计 横摆角速度 质心侧偏角
下载PDF
基于动态噪声自适应无迹卡尔曼滤波的锂离子电池SOC估计
3
作者 尹康涌 孙磊 +4 位作者 李浩秒 郭东亮 肖鹏 王康丽 蒋凯 《储能科学与技术》 CAS CSCD 北大核心 2024年第11期4065-4077,共13页
锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池... 锂离子电池具有无记忆效应、轻量化、环保等特点,因此常作为电动交通工具、电子设备的能源来源,并适用于各种规模的能源存储。在锂离子电池管理系统中,电池的荷电状态(state of charge,SOC)是最关键的指标之一,其准确估计对于实现电池系统的高效能量管理和优化控制至关重要。因此本文提出了一种基于动态噪声自适应无迹卡尔曼滤波的SOC估计方法。首先,通过间歇放电实验获取电池不同SOC下的开路电压,并进一步拟合得到电池的OCV-SOC曲线,接着采用二阶RC等效电路模型对锂离子电池建模,然后通过混合功率脉冲特性工况测试对电池模型参数进行辨识。由于实际应用中锂离子电池为非线性系统且SOC估计精度容易受到噪声的影响,本文在卡尔曼滤波算法的基础上采用无迹变换处理,加入噪声自适应过程,以实现噪声特性自适应估计,动态调整测量噪声与过程噪声,提高算法鲁棒性以及估计精度。最后选取DST与FUDS工况进行验证,结果表明在不同工况下动态噪声自适应无迹卡尔曼滤波算法的估计平均绝对误差、最大绝对误差以及均方根误差相较于自适应无迹卡尔曼滤波、无迹卡尔曼滤波算法均有降低,其平均绝对误差小于0.59%。本文提出的动态噪声自适应无迹卡尔曼滤波算法能够更准确地估计锂离子电池SOC。 展开更多
关键词 动态噪声自适应无迹卡尔曼滤波 荷电状态 二阶RC等效电路模型 无迹卡尔曼滤波
下载PDF
四驱车辆交互式多模型自适应无迹卡尔曼滤波路面附着系数估计
4
作者 邓浩楠 赵治国 +2 位作者 赵坤 李刚 于勤 《汽车工程》 EI CSCD 北大核心 2024年第8期1357-1369,共13页
路面附着系数对车辆动力学控制性能有重要影响,为准确实时估计路面附着系数,提高算法在不同路面及工况下的估计精度与收敛速度,本文针对分布式四轮驱动车辆,结合7自由度车辆动力学模型和Dugoff轮胎模型,提出了一种基于交互式多模型的自... 路面附着系数对车辆动力学控制性能有重要影响,为准确实时估计路面附着系数,提高算法在不同路面及工况下的估计精度与收敛速度,本文针对分布式四轮驱动车辆,结合7自由度车辆动力学模型和Dugoff轮胎模型,提出了一种基于交互式多模型的自适应无迹卡尔曼滤波(IMM-AUKF)路面附着系数估计方法,首先将改进的Sage-Husa噪声估计器引入到无迹卡尔曼滤波(UKF)算法中,构建了自适应无迹卡尔曼滤波(AUKF)观测器,以对测量噪声进行实时更新并保证其协方差矩阵的正定性,同时提高新观测数据的权重,并增强算法的实时跟踪精度和稳定性;然后通过选择不同的观测变量,分别构建了车辆纵向行驶工况AUKF观测器和横纵向耦合工况AUKF观测器,并利用交互式多模型(IMM)算法进行观测器模型的切换,进而实现算法在车辆不同行驶工况下路面附着系数的准确估计。高附、低附、对接以及对开等路面仿真试验及实车道路试验结果表明,所提出的IMM-AUKF算法相比于传统的UKF算法,具有更高的估计精度与更快的收敛速度,能够适应不同工况下路面附着系数的实时准确估计。 展开更多
关键词 分布式四轮驱动 路面附着系数 交互式多模型 自适应无迹卡尔曼滤波
下载PDF
基于自适应无迹卡尔曼滤波的气流角融合方法
5
作者 吴云燕 黄天鹏 +2 位作者 刘武 朱雪耀 马钊 《电光与控制》 CSCD 北大核心 2024年第11期109-114,共6页
迎角、侧滑角是影响飞控系统安全的关键参数,而大气数据系统在恶劣天气、机动飞行情况下难以准确测量气流角,在故障隔离失败情况下甚至会引发飞行安全问题。鉴于此,提出基于自适应无迹卡尔曼滤波(AUKF)的气流角融合方法,通过惯导系统和... 迎角、侧滑角是影响飞控系统安全的关键参数,而大气数据系统在恶劣天气、机动飞行情况下难以准确测量气流角,在故障隔离失败情况下甚至会引发飞行安全问题。鉴于此,提出基于自适应无迹卡尔曼滤波(AUKF)的气流角融合方法,通过惯导系统和飞行器动力学模型信息构建滤波模型,同时将自适应滤波思想应用于无迹卡尔曼滤波器,利用观测残差序列构建卡方检验和自适应渐消矩阵,实现了动态飞行、故障情况下气流角的高精度输出。仿真结果表明,所提方法的性能优于传统卡尔曼滤波算法,具有较大的工程应用价值。 展开更多
关键词 迎角 侧滑角 自适应无迹卡尔曼滤波 故障自检测 卡方检验 自适应渐消矩阵
下载PDF
小波分析的自适应卡尔曼滤波模型在地铁隧道变形监测中的应用
6
作者 孙常康 邓文彬 +1 位作者 秦德胜 宋乐乐 《北京测绘》 2024年第1期113-118,共6页
为了加强地铁安全保护机制,基于测量机器人智能化、自动化的特点,对某试验区的地铁隧道进行变形监测,选择Trimble S9 HP测量机器人进行数据采集,通过云平台进行数据处理及变形分析,最后利用小波分析的自适应卡尔曼滤波模型对后期形变量... 为了加强地铁安全保护机制,基于测量机器人智能化、自动化的特点,对某试验区的地铁隧道进行变形监测,选择Trimble S9 HP测量机器人进行数据采集,通过云平台进行数据处理及变形分析,最后利用小波分析的自适应卡尔曼滤波模型对后期形变量进行预测。结果表明,自动测量机器人的测量精度满足隧道监测要求,完成了地铁隧道变形监测的预设目标,分析隧道结构的变形特征并通过小波分析的自适应卡尔曼滤波模型进行变形预测,所得预测数据精度较高,可以为今后工程建设和地铁维护提供参考。 展开更多
关键词 地铁隧道 自动测量机器人 变形监测 小波分析 自适应卡尔曼滤波模型
下载PDF
基于自适应无迹卡尔曼滤波算法的锂电池荷电状态预测
7
作者 蒙永龙 艾学忠 +2 位作者 郑巍 王明达 汪冬冬 《化工自动化及仪表》 CAS 2024年第2期294-300,共7页
针对无迹卡尔曼滤波在噪声不稳定和工况复杂的情况下锂电池荷电状态预测准确度低的问题,提出基于二阶等效RC电路模型,采用遗忘因子递推最小二乘法对模型参数进行辨识,使用自适应无迹卡尔曼滤波算法(AUKF)对锂电池荷电状态进行预测,最后... 针对无迹卡尔曼滤波在噪声不稳定和工况复杂的情况下锂电池荷电状态预测准确度低的问题,提出基于二阶等效RC电路模型,采用遗忘因子递推最小二乘法对模型参数进行辨识,使用自适应无迹卡尔曼滤波算法(AUKF)对锂电池荷电状态进行预测,最后在DST数据工况下,验证预测模型的准确性。对无迹卡尔曼滤波(UKF)算法和提出的AUKF算法进行仿真对比,结果表明:所提算法的最大误差在±0.02之内,预测精度更高、适用性更强。 展开更多
关键词 锂电池 荷电状态 自适应无迹卡尔曼滤波 遗忘因子递推最小二乘
下载PDF
基于指数加权平均的GNSS/SINS组合导航系统Sage-Husa自适应卡尔曼滤波算法
8
作者 林雪原 孙炜玮 《大地测量与地球动力学》 CSCD 北大核心 2024年第12期1287-1292,1320,共7页
测量噪声异常会导致GNSS/SINS组合导航系统滤波精度下降,甚至滤波发散。为解决该问题,首先提出适用于组合导航系统的Sage-Husa自适应卡尔曼滤波方法SHAKF;然后根据滤波新息协方差的理论估计值及实际估计值构建控制因子,提出测量噪声均... 测量噪声异常会导致GNSS/SINS组合导航系统滤波精度下降,甚至滤波发散。为解决该问题,首先提出适用于组合导航系统的Sage-Husa自适应卡尔曼滤波方法SHAKF;然后根据滤波新息协方差的理论估计值及实际估计值构建控制因子,提出测量噪声均方差突变起始时刻及结束时刻的检测方法,构建基于指数函数变化规律的遗忘因子,进而提出基于指数加权平均的Sage-Husa自适应卡尔曼滤波方法EWASHAKF;最后将EWASHAKF应用于GNSS/SINS组合导航系统,并进行仿真实验。结果表明,相对于SHAKF,EWASHAKF能够准确地跟踪测量噪声均方差的各种变化,进而提高组合导航系统的滤波精度。 展开更多
关键词 Sage-Husa算法 组合导航系统 自适应卡尔曼滤波算法 控制因子 遗忘因子
下载PDF
基于自适应优化选择-抗差自适应卡尔曼滤波混合模型的GNSS+5G组合定位
9
作者 胡祥祥 宋宝 +4 位作者 石亚亚 庞栋栋 吴成永 张利利 李一蜚 《测绘通报》 CSCD 北大核心 2024年第7期24-29,共6页
PNT系统的构建是通信和导航领域的关键课题。发展能够兼容集成不同类型PNT手段,提供具备较好的弹性和环境适应性的综合PNT体系已成为当前刻不容缓的重要任务。5G和北斗系统的出现和发展,为PNT体系走向更综合、更弹性提供了新的思路。据... PNT系统的构建是通信和导航领域的关键课题。发展能够兼容集成不同类型PNT手段,提供具备较好的弹性和环境适应性的综合PNT体系已成为当前刻不容缓的重要任务。5G和北斗系统的出现和发展,为PNT体系走向更综合、更弹性提供了新的思路。据此,本文提出了一种基于GNSS+5G组合数据的自适应优化选择-抗差自适应卡尔曼滤波(AOS-RAKF)算法,以实现城市复杂环境中的高精度定位估计。该算法主要由两个模块组成,即基于AOS的5G基站测量数据优化和基于AOS-RAKF算法的GNSS+5G组合定位。其中,基于AOS的5G基站测量数据优化模块通过自适应优化选择因子实现更好的观测数据重选。GNSS+5G组合定位模块利用优化后的5G数据和GNSS建立耦合结构模型,再利用RAKF方法实现移动车辆的高精度定位。半实物仿真测试结果表明,复杂城市环境下与使用原始测量数据的GNSS、单5G、传统的GNSS+5G组合定位相比,本文AOS-RAKF方法显著提高了定位精度。 展开更多
关键词 5G定位 GNSS GNSS+5G组合定位 自适应优化选择算法 抗差自适应卡尔曼滤波算法
下载PDF
基于双闭环与自适应卡尔曼滤波的目标追踪系统
10
作者 邢景揚 李芳芳 +1 位作者 金灵雨 王渠成 《自动化与仪表》 2024年第11期43-46,共4页
面对动态环境下机器人控制的挑战,现有的单闭环控制系统及传统滤波方法常因响应速度和稳定性的矛盾而难以达到理想的操作精度。为解决这一问题,研究提出了一种结合双闭环控制和自适应卡尔曼滤波的控制策略,以提高机器人的追踪和操控精... 面对动态环境下机器人控制的挑战,现有的单闭环控制系统及传统滤波方法常因响应速度和稳定性的矛盾而难以达到理想的操作精度。为解决这一问题,研究提出了一种结合双闭环控制和自适应卡尔曼滤波的控制策略,以提高机器人的追踪和操控精度。通过自适应卡尔曼滤波优化视觉传感器和陀螺仪的数据处理,系统有效降低了传感器噪声并优化了数据质量。内环控制依据目标检测结果进行反馈调节,外环控制实现精准目标追踪。通过机器人平台移动控制系统对所提出的方法进行评价,试验结果表明,与单闭环系统和传统滤波方法相比,该策略在处理动态移动目标时展现出更高的精度和更优的稳定性,展示了其在复杂机器人操作场景中的实际应用价值。 展开更多
关键词 双闭环控制 自适应卡尔曼滤波 目标追踪 视觉反馈
下载PDF
基于自适应无迹卡尔曼滤波和经济模型预测控制的全钒液流电池SOC/SOP联合估计方法
11
作者 张宇 姚尧 +4 位作者 刘睿 金雷 薛斐 周鹏 熊斌宇 《储能科学与技术》 CAS CSCD 北大核心 2024年第11期4089-4101,共13页
荷电状态(state of charge,SOC)和峰值功率(state of peak power,SOP)的精确估计对保障电池安全稳定运行具有重要意义。为解决传统估计算法误差高、鲁棒性差等问题,本文提出了一种基于自适应无迹卡尔曼滤波(adaptive unscented Kalman f... 荷电状态(state of charge,SOC)和峰值功率(state of peak power,SOP)的精确估计对保障电池安全稳定运行具有重要意义。为解决传统估计算法误差高、鲁棒性差等问题,本文提出了一种基于自适应无迹卡尔曼滤波(adaptive unscented Kalman filtering,AUKF)和经济模型预测控制(economic model predictive control,EMPC)的全钒液流电池(all-vanadium redox batteries,VRB)SOC/SOP联合估计方法。首先,为了提高传统模型的建模精度,本文综合考虑了VRB的电化学场和流体力学场的耦合特性,建立了一个能够全面刻画VRB运行过程的综合等效电路模型,并采用人工蜂群算法(artificial bee colony algorithm,ABC)对模型参数进行离线辨识。随后,考虑到传统的UKF算法无法适应系统噪声,收敛性差,且忽略电池参数变化等缺点,本文提出了基于AUKF的在线参数辨识和SOC估计算法,通过自适应调整UKF算法的参数来提高模型的精度。结合SOC的估计结果,采用EMPC算法估计VRB的SOP,并综合考虑了电压、电流、SOC和电解液流速等约束条件。最后,设计了多种实验工况验证了本文提出的SOC/SOP联合估计算法的精度。文章研究内容能够为液流电池不同运行状态下峰值功率预测和储能电站的精准调度提供依据。 展开更多
关键词 全钒液流电池 荷电状态 峰值功率 在线参数辨识 自适应无迹卡尔曼滤波 经济模型预测控制
下载PDF
自适应渐消无迹卡尔曼滤波锂电池SoC估计
12
作者 郭向伟 李璐颖 +2 位作者 王晨 王亚丰 李万 《电子测量与仪器学报》 CSCD 北大核心 2024年第3期167-175,共9页
精确的荷电状态(SoC)是锂电池安全高效运行的重要保障,文章针对传统无迹卡尔曼滤波(UKF)对非线性系统突变状态跟踪能力差,导致SoC估计精度低的问题,提出一种新型自适应渐消无迹卡尔曼滤波(AFUKF)SoC估计方法。首先,通过设计新型衰减因子... 精确的荷电状态(SoC)是锂电池安全高效运行的重要保障,文章针对传统无迹卡尔曼滤波(UKF)对非线性系统突变状态跟踪能力差,导致SoC估计精度低的问题,提出一种新型自适应渐消无迹卡尔曼滤波(AFUKF)SoC估计方法。首先,通过设计新型衰减因子对UKF误差协方差矩阵进行加权,并基于新型衰减因子完成AFUKF的设计,减小陈旧量测值对估计结果的影响,提高传统UKF的估计精度和跟踪能力。其次,基于自主实验平台测试数据,验证了本文所提AFUKF算法存在初始误差时,相较于传统UKF算法,ECE工况下平均绝对误差和均方根误差分别下降了47.95%和33.92%,DST工况下分别下降了36.40%和27.73%;相较于同类改进的AUKF算法,ECE工况下平均绝对误差和均方根误差分别下降了43.36%和33.51%,DST工况下分别下降了39.01%和25.63%。模型结果表明,相比于传统UKF算法以及同类型改进的AUKF算法,AFUKF具有更高的估计精度,且在相同初始SoC误差条件下具有更好的鲁棒性。 展开更多
关键词 荷电状态 衰减因子 无迹卡尔曼滤波 自适应渐消无迹卡尔曼滤波
下载PDF
基于自适应卡尔曼滤波的RFID/SINS组合导航研究
13
作者 张一康 陈燚涛 刘芳 《无线电工程》 2024年第1期98-104,共7页
在室内导航定位中,射频识别(Radio Frequency Identification,RFID)技术具有信号穿透性强、成本低廉等诸多优点,能够有效代替GPS完成室内组合导航。针对室内惯性导航误差发散和滤波中噪声参数不确定的问题,提出了基于自适应卡尔曼滤波(A... 在室内导航定位中,射频识别(Radio Frequency Identification,RFID)技术具有信号穿透性强、成本低廉等诸多优点,能够有效代替GPS完成室内组合导航。针对室内惯性导航误差发散和滤波中噪声参数不确定的问题,提出了基于自适应卡尔曼滤波(Adaptive Kalman Filtering,AKF)的RFID/SINS组合导航系统,通过RFID定位系统抑制惯性导航误差发散,并应用AKF将噪声参数与量测输出参数关联实现实时更新。对AKF和标准卡尔曼滤波(Kalman Filtering,KF)下的RFID/SINS组合导航系统进行了仿真和实验。结果表明,在AKF下组合导航系统平均定位误差降低了10%,位置稳定性提升了7.4%,定位误差保持在0.07 m左右。基于AKF的RFID/SINS组合导航系统能够满足室内高精度定位导航的需求。 展开更多
关键词 射频识别 捷联惯导系统 组合导航 自适应卡尔曼滤波 仿真与实验分析
下载PDF
基于改进的无迹卡尔曼滤波长基线定位算法研究
14
作者 侯华 王曹 +1 位作者 杨沛钊 曹俊俊 《计算机应用与软件》 北大核心 2024年第9期314-318,376,共6页
在复杂的水环境中,自主水下机器人(Autonomous Underwater Vehicle, AUV)运用声学导航系统实现自主导航并确保精确定位。针对水声环境中由于外部噪声带来的定位精度损失问题,提出一种改进的无迹卡尔曼滤波(Adapt Unscented Kalman Filte... 在复杂的水环境中,自主水下机器人(Autonomous Underwater Vehicle, AUV)运用声学导航系统实现自主导航并确保精确定位。针对水声环境中由于外部噪声带来的定位精度损失问题,提出一种改进的无迹卡尔曼滤波(Adapt Unscented Kalman Filter, AUKF)长基线定位算法。该算法在无迹卡尔曼算法(UKF)的基础上引入遗忘因子,充分利用新的测量数据动态调整测量协方差矩阵和过程协方差矩阵,有效避免因长期运行带来的累计误差。实验结果显示,当AUV沿两种不同轨迹运行时,AUKF算法的均方根误差最低,分别为2.901 1、19.221 5。该算法定位精度高,适用于长时间工作的高精度水下定位。 展开更多
关键词 AUV 长基线定位 自适应无迹卡尔曼滤波
下载PDF
基于PNGV模型与自适应卡尔曼滤波的铅炭电池荷电状态评估 被引量:4
15
作者 陈正 王志得 +2 位作者 牟文彪 祝培旺 肖刚 《储能科学与技术》 CAS CSCD 北大核心 2023年第3期941-950,共10页
储能电池应用广泛,准确估计储能电池的荷电状态(state of charge,SOC)对提高电池健康状态有重要意义。铅炭电池作为一种高性能、低成本、高安全性的新型储能电池,在储能电站等场景受到广泛关注,而目前尚缺少铅炭电池SOC估计相关研究。... 储能电池应用广泛,准确估计储能电池的荷电状态(state of charge,SOC)对提高电池健康状态有重要意义。铅炭电池作为一种高性能、低成本、高安全性的新型储能电池,在储能电站等场景受到广泛关注,而目前尚缺少铅炭电池SOC估计相关研究。本工作首先通过静流间歇滴定技术探究铅炭电池的荷电状态与开路电压关系,后通过混合脉冲功率性能试验得到铅炭电池的伏安特征数据,建立一阶Thevenin和一阶PNGV等效电路模型,利用基于代理模型和灵敏度分析的随机算法(surrogate optimization algorithm,SOA)对两种等效电路模型进行参数辨识。在此基础上,利用扩展卡尔曼滤波算法(extended Kalman filter,EKF)估计铅炭电池SOC,估算过程考虑噪声干扰。另外,在铅炭电池SOC初值未知的情况下,EKF算法不能准确估计铅炭电池SOC。因此,本工作提出采用自适应扩展卡尔曼滤波算法(adaptive extended Kalman filter,AEKF)对铅炭电池进行状态估计,来弥补EKF的不足。结果表明,在存在噪声且SOC初值未知的情况下,AEKF算法较EKF算法和安时积分法更能准确估计铅炭电池SOC,在给定SOC初值为0.9时,误差最小,为3.91%,验证了算法的有效性与适用性,提高了铅炭电池荷电状态估计的准确性和可靠性。 展开更多
关键词 铅炭电池 荷电状态 PNGV模型 自适应卡尔曼滤波
下载PDF
基于自适应无迹卡尔曼滤波算法的月壤参数估计
16
作者 王志福 王学晨 +2 位作者 王阳 梁常春 王瑞 《实验室研究与探索》 CAS 北大核心 2023年第10期106-110,248,共6页
在月球低重力环境下,载人月球车的行驶稳定性会受到月壤参数影响和发生参数无法直接获取的问题,对此提出一种月壤参数估计算法。建立月球车行驶过程中轮壤模型并进行简化,设计基于自适应无迹卡尔曼滤波的估计器,通过车轮力实现月壤参数... 在月球低重力环境下,载人月球车的行驶稳定性会受到月壤参数影响和发生参数无法直接获取的问题,对此提出一种月壤参数估计算法。建立月球车行驶过程中轮壤模型并进行简化,设计基于自适应无迹卡尔曼滤波的估计器,通过车轮力实现月壤参数在线估计。在Adams/Simulink中搭建月球车动力学模型及估计算法模型,并进行联合仿真。仿真结果表明,设计的估计器能够较为准确地估计月壤参数。 展开更多
关键词 载人月球车 自适应无迹卡尔曼滤波 月壤参数
下载PDF
自适应卡尔曼滤波与PSO-GA-BP算法的机器人误差补偿 被引量:5
17
作者 李光保 高栋 +2 位作者 路勇 平昊 周愿愿 《中国机械工程》 EI CAS CSCD 北大核心 2023年第20期2456-2465,共10页
采用七轴机器人设备夹持激光器的方式对某型号发射筒进行切割开孔加工。在加工过程中,因轨迹精度和绝对定位精度较低,容易对型号产品发射筒产生损伤和误差切割等问题,运用D-H算法建立七轴机器人理想模型,运用正逆运动学数值算法对理想... 采用七轴机器人设备夹持激光器的方式对某型号发射筒进行切割开孔加工。在加工过程中,因轨迹精度和绝对定位精度较低,容易对型号产品发射筒产生损伤和误差切割等问题,运用D-H算法建立七轴机器人理想模型,运用正逆运动学数值算法对理想模型进行验证,运用理想模型的理论位姿参数和激光跟踪仪的测量位姿参数基于Sage-Husa自适应卡尔曼滤波求解七轴机器人真实位姿坐标信息,得到理想位姿参数和真实位姿坐标信息的关节误差,然后结合粒子群优化-遗传算法-BP神经网络联合算法对七轴机器人建立误差预测模型,采用七轴机器人理论位姿参数作为输入样本,真实位姿与理论位姿的各关节角度差作为输出样本,通过库卡机器人Workvisual 5.0软件按照模型输出值对七轴机器人的各关节角度值进行补偿。经过仿真实验和加工,各关节误差补偿后的七轴机器人轨迹误差和绝对定位误差减小72%,满足工艺要求。 展开更多
关键词 激光切割 七轴机器人 误差补偿 粒子群优化-遗传算法-BP Sage-Husa自适应卡尔曼滤波
下载PDF
小波结合改进自适应卡尔曼滤波的MEMS陀螺降噪方法 被引量:2
18
作者 余国才 王虹 +1 位作者 孙传波 杨然 《微波学报》 CSCD 北大核心 2023年第S01期414-417,共4页
惯性传感器是惯性导航系统的核心组成,其精度决定了惯性导航系统的精度。为了提高惯性传感器精度,提出一种小波分析和时间序列相结合的改进Sage-Husa自适应卡尔曼滤波降噪方法。首先利用小波去噪滤除陀螺仪高频噪声,然后利用时间序列分... 惯性传感器是惯性导航系统的核心组成,其精度决定了惯性导航系统的精度。为了提高惯性传感器精度,提出一种小波分析和时间序列相结合的改进Sage-Husa自适应卡尔曼滤波降噪方法。首先利用小波去噪滤除陀螺仪高频噪声,然后利用时间序列分析与改进Sage-Husa自适应卡尔曼滤波相结合处理低频噪声。通过Allan方差分析估计陀螺仪噪声系数,结果表明所提方法降噪效果相较于传统卡尔曼滤波,陀螺仪的角度随机游走、零偏不稳定性、角速率游走及速率斜坡分别提高了90.6%、83.2%、87.9%、88.1%。 展开更多
关键词 MEMS陀螺 小波去噪 Sage-Husa自适应卡尔曼滤波 时间序列分析
下载PDF
基于自适应简化容积卡尔曼滤波的编队卫星相对导航 被引量:2
19
作者 穆建君 周川 +2 位作者 郭健 韩飞 孙玥 《南京理工大学学报》 CAS CSCD 北大核心 2023年第3期365-372,共8页
针对在星间相对导航中噪声的统计特性未知可能引起滤波估计精度下降甚至发散的问题,提出了一种自适应简化容积卡尔曼滤波(ASCKF)算法。将Sage-Husa自适应滤波与容积卡尔曼滤波(CKF)相结合,通过容积规则摆脱线性滤波的局限性。改进Sage-H... 针对在星间相对导航中噪声的统计特性未知可能引起滤波估计精度下降甚至发散的问题,提出了一种自适应简化容积卡尔曼滤波(ASCKF)算法。将Sage-Husa自适应滤波与容积卡尔曼滤波(CKF)相结合,通过容积规则摆脱线性滤波的局限性。改进Sage-Husa噪声估计器以避免噪声方差在线估计可能出现的非正定现象,从而保证了滤波器对噪声统计变化的自适应能力。结合编队卫星运动模型的特点,用常规卡尔曼滤波(KF)的时间更新代替相应的容积变换过程,在不影响滤波器性能的前提下减少了运算量。仿真结果表明:在测量噪声统计特性未知的情况下,与CKF相比,该文算法对相对状态的估计精度提高了近25%,同时滤波器的稳定性也得到了提高。 展开更多
关键词 自适应卡尔曼滤波 容积卡尔曼滤波 编队卫星 相对导航 容积规则 噪声估计器 时间更新 容积变换
下载PDF
自适应卡尔曼滤波在GNSS沉降监测中的应用 被引量:2
20
作者 罗保林 金飞 罗亮 《地理空间信息》 2023年第10期73-75,共3页
为解决GNSS-RTK实时测量中存在的数据波动性大,难以满足高精度沉降监测需求的问题,通过引入方差补偿自适应卡尔曼滤波,对原始测量数据进行滤波去噪,实现了绝大部分白噪声的过滤和修正。同时,对原始测量数据与滤波数据进行分析比对,滤波... 为解决GNSS-RTK实时测量中存在的数据波动性大,难以满足高精度沉降监测需求的问题,通过引入方差补偿自适应卡尔曼滤波,对原始测量数据进行滤波去噪,实现了绝大部分白噪声的过滤和修正。同时,对原始测量数据与滤波数据进行分析比对,滤波前原始数据标准差在7 mm左右,方差补偿法滤波后数据标准差在3 mm左右,实现了两倍多的精度提升。实践证明,方差补偿自适应卡尔曼滤波在抑制滤波发散和提高监测数据精度上具有显著的效果。 展开更多
关键词 沉降监测 卡尔曼滤波 自适应卡尔曼滤波 方差补偿
下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部