期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于卡尔曼粒子滤波器的人眼跟踪 被引量:5
1
作者 叶剑波 夏利民 《计算机工程》 EI CAS CSCD 北大核心 2006年第3期196-198,共3页
提出了一种基于卡尔曼粒子滤波器的人眼跟踪算法,该方法利用一种新的二维可变形模板来提取眼睛的精确特征,采用粒子滤波器跟踪人眼。为了进一步提高普通粒子滤波器跟踪的速度和精度,将卡尔曼滤波器引入粒子滤波器中,利用卡尔曼滤波器算... 提出了一种基于卡尔曼粒子滤波器的人眼跟踪算法,该方法利用一种新的二维可变形模板来提取眼睛的精确特征,采用粒子滤波器跟踪人眼。为了进一步提高普通粒子滤波器跟踪的速度和精度,将卡尔曼滤波器引入粒子滤波器中,利用卡尔曼滤波器算法进行采样预测和校正,减少了人眼跟踪中所需的粒子数目,从而达到快速而准确的跟踪目的。最后,用上述方法进行了实验,验证了该方法的实用性和有效性。 展开更多
关键词 特征参数 卡尔曼粒子滤波器 人眼跟踪
下载PDF
基于卡尔曼/粒子组合滤波器的组合导航方法研究 被引量:18
2
作者 崔平远 郑黎方 +1 位作者 裴福俊 刘红云 《系统仿真学报》 CAS CSCD 北大核心 2009年第1期220-223,共4页
粒子滤波在组合导航系统非线性非高斯条件下的滤波估计中获得广泛关注,但捷联惯导误差模型维数较高,直接应用粒子滤波会带来维数灾难。设计了用于SINS/GPS组合导航的卡尔曼/粒子组合滤波算法,采用卡尔曼滤波和粒子滤波分别对系统的线性... 粒子滤波在组合导航系统非线性非高斯条件下的滤波估计中获得广泛关注,但捷联惯导误差模型维数较高,直接应用粒子滤波会带来维数灾难。设计了用于SINS/GPS组合导航的卡尔曼/粒子组合滤波算法,采用卡尔曼滤波和粒子滤波分别对系统的线性和非线性状态进行估计,降低粒子滤波器状态维数,避免维数灾难。采用系统残差采样法的规则化粒子滤波器,有效缓解粒子贫化问题,并减少计算负担。仿真结果表明卡尔曼/粒子组合滤波方法的估计性能与粒子滤波相当,但计算复杂度前者要低得多。 展开更多
关键词 捷联惯导 组合导航 粒子滤波器 卡尔曼/粒子组合滤波器
下载PDF
卡尔曼/粒子滤波器在船用组合导航中的应用 被引量:1
3
作者 祝雪芬 陈熙源 +1 位作者 涂刚毅 李滋刚 《舰船电子工程》 2009年第4期59-63,共5页
采用将全球定位系统GPS(Global Positioning System)与捷联惯性导航系统SINS(Strapdown Inertial Navigation System)进行组合导航的方式,组合后系统性能将优于GPS或SINS单独使用时的任一系统。介绍了基本粒子滤波器算法原理并对卡尔曼... 采用将全球定位系统GPS(Global Positioning System)与捷联惯性导航系统SINS(Strapdown Inertial Navigation System)进行组合导航的方式,组合后系统性能将优于GPS或SINS单独使用时的任一系统。介绍了基本粒子滤波器算法原理并对卡尔曼/粒子组合滤波器在船用GPS/SINS组合导航中的实现形式及算法特点进行了研究。仿真结果表明,对于船用SINS/GPS组合导航问题,卡尔曼/粒子组合滤波器能够获得较高的滤波精度,满足实际船用导航要求。 展开更多
关键词 组合导航 卡尔曼/粒子组合滤波器 蒙特卡罗方法 贝叶斯估计
下载PDF
电力系统动态状态估计算法研究 被引量:2
4
作者 陈焕远 刘新东 佘彩绮 《科学技术与工程》 2011年第25期6071-6074,共4页
为了提高电力系统动态状态估计的估计精度和收敛速度,引入一种解决非线性滤波问题的新型粒子滤波算法——混合卡尔曼粒子滤波器(Mixed Kalman Particle Filter,MKPF)。该算法采用扩展卡尔曼滤波器(EKF)与无迹卡尔曼滤波器(UKF)混合作为... 为了提高电力系统动态状态估计的估计精度和收敛速度,引入一种解决非线性滤波问题的新型粒子滤波算法——混合卡尔曼粒子滤波器(Mixed Kalman Particle Filter,MKPF)。该算法采用扩展卡尔曼滤波器(EKF)与无迹卡尔曼滤波器(UKF)混合作为建议分布,得到一种更接近真实分布的近似表达式。仿真算例将MKPF与EKF和UKF进行了对比,比较结果证明在电力系统受到扰动之后,MKPF算法能够快速地收敛于真实值,且具有比EKF与UKF更高的估计精度和稳定性,达到了在线准确估计的要求。 展开更多
关键词 动态状态估计 扩展卡尔曼滤波器 无迹卡尔曼滤波器 混合卡尔曼粒子滤波器
下载PDF
Gaussian particle filter based pose and motion estimation 被引量:1
5
作者 WU Xue-dong SONG Zhi-huan 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第10期1604-1613,共10页
Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fi... Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fields such as photogrammetry. A solution to pose and motion estimation problem that uses two-dimensional (2D) intensity images from a single camera is desirable for real-time applications. The difficulty in performing this measurement is that the process of projecting 3D object features to 2D images is a nonlinear transformation. In this paper, the 3D transformation is modeled as a nonlinear stochastic system with the state estimation providing six degrees-of-freedom motion and position values, using line features in image plane as measuring inputs and dual quaternion to represent both rotation and translation in a unified notation. A filtering method called the Gaussian particle filter (GPF) based on the panicle filtering concept is presented for 3D pose and motion estimation of a moving target from monocular image sequences. The method has been implemented with simulated data, and simulation results are provided along with comparisons to the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) to show the relative advantages of the GPF. Simulation results showed that GPF is a superior alternative to EKF and UKF. 展开更多
关键词 Gaussian particle filter (GPF) Pose and motion estimation Line features Monocular vision Extended Kalman filter(EKF) Unscented Kalman filter (UKF) Dual quatemion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部