基于电池的戴维宁(Thevenin)模型,设计了多模型自适应卡尔曼滤波器,并将多模型自适应卡尔曼滤波器应用于电动汽车电池荷电状态(state-of-charge,SOC)估计。由于老化电池是未知系统,利用传统的单一模型卡尔曼滤波器估计老化电池SOC时,因...基于电池的戴维宁(Thevenin)模型,设计了多模型自适应卡尔曼滤波器,并将多模型自适应卡尔曼滤波器应用于电动汽车电池荷电状态(state-of-charge,SOC)估计。由于老化电池是未知系统,利用传统的单一模型卡尔曼滤波器估计老化电池SOC时,因模型不准确而使估计误差增大。与单一模型滤波估计相比,多模型滤波估计融合了电池的各种老化信息,适合于未知系统的状态估计,从而提高了SOC的估计精度,并通过实验证明了上述结论的正确性。利用多模型自适应卡尔曼滤波器估计电池SOC,老化电池的模型与权值最大的单一模型较接近,根据单一模型权值可以近似估计出老化电池的健康状态(state of health,SOH),并通过电池容量测量,证明了SOH估计的正确性。展开更多
应用传统的无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计电动汽车锂离子动力电池核电状态(state of charge,SOC)时,常会出现由于电池模型参数不准确而造成估计误差增大的问题,该文采用了自适应无迹卡尔曼滤波(adaptive unscent...应用传统的无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计电动汽车锂离子动力电池核电状态(state of charge,SOC)时,常会出现由于电池模型参数不准确而造成估计误差增大的问题,该文采用了自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法解决该问题。AUKF算法是一种循环迭代算法,可以实时估计电池模型中的欧姆内阻,提高电池模型准确性,从而提高电池SOC估计精度。另外,电池的欧姆内阻可以表征电池的健康状态(state of health,SOH),因此还可以根据电池的欧姆内阻估计出电池的SOH。在设定工况下对电池做充放电实验,实验分析表明,与UKF相比,AUKF提高了电池SOC估计的精度,并能准确的估计出电池的欧姆内阻。展开更多
文摘基于电池的戴维宁(Thevenin)模型,设计了多模型自适应卡尔曼滤波器,并将多模型自适应卡尔曼滤波器应用于电动汽车电池荷电状态(state-of-charge,SOC)估计。由于老化电池是未知系统,利用传统的单一模型卡尔曼滤波器估计老化电池SOC时,因模型不准确而使估计误差增大。与单一模型滤波估计相比,多模型滤波估计融合了电池的各种老化信息,适合于未知系统的状态估计,从而提高了SOC的估计精度,并通过实验证明了上述结论的正确性。利用多模型自适应卡尔曼滤波器估计电池SOC,老化电池的模型与权值最大的单一模型较接近,根据单一模型权值可以近似估计出老化电池的健康状态(state of health,SOH),并通过电池容量测量,证明了SOH估计的正确性。
文摘应用传统的无迹卡尔曼滤波(unscented Kalman filter,UKF)算法估计电动汽车锂离子动力电池核电状态(state of charge,SOC)时,常会出现由于电池模型参数不准确而造成估计误差增大的问题,该文采用了自适应无迹卡尔曼滤波(adaptive unscented Kalman filter,AUKF)算法解决该问题。AUKF算法是一种循环迭代算法,可以实时估计电池模型中的欧姆内阻,提高电池模型准确性,从而提高电池SOC估计精度。另外,电池的欧姆内阻可以表征电池的健康状态(state of health,SOH),因此还可以根据电池的欧姆内阻估计出电池的SOH。在设定工况下对电池做充放电实验,实验分析表明,与UKF相比,AUKF提高了电池SOC估计的精度,并能准确的估计出电池的欧姆内阻。