Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobil...Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.展开更多
In this paper, a new bias estimation method is proposed and applied in a regional ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting (WRF) Model. The method is based on a homogeneous linea...In this paper, a new bias estimation method is proposed and applied in a regional ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting (WRF) Model. The method is based on a homogeneous linear bias model, and the model bias is estimated using statistics at each assimilation cycle, which is different from the state augmentation methods proposed in pre- vious literatures. The new method provides a good estimation for the model bias of some specific variables, such as sea level pres- sure (SLP). A series of numerical experiments with EnKF are performed to examine the new method under a severe weather condi- tion. Results show the positive effect of the method on the forecasting of circulation pattern and meso-scale systems, and the reduc- tion of analysis errors. The background error covarianee structures of surface variables and the effects of model system bias on EnKF are also studied under the error covariance structures and a new concept 'correlation scale' is introduced. However, the new method needs further evaluation with more cases of assimilation.展开更多
Active microwave remote sensing data were used to calculate the near-surface soil moisture in the vegetated areas.In this study,Advanced Synthetic Aperture Radar(ASAR)observations of surface soil moisture content were...Active microwave remote sensing data were used to calculate the near-surface soil moisture in the vegetated areas.In this study,Advanced Synthetic Aperture Radar(ASAR)observations of surface soil moisture content were used in a data assimilation framework to improve the estimation of the soil moisture profile at the middle reaches of the Heihe River Basin,Northwest China.A one-dimensional soil moisture assimilation system based on the ensemble Kalman filter(EnKF),the forward radiative transfer model,crop model,and the Distributed Hydrology-Soil-Vegetation Model(DHSVM)was developed.The crop model,as a semi-empirical model,was used to estimate the surface backscattering of vegetated areas.The DHSVM is a distributed hydrology-vegetation model that explicitly represents the effects of topography and vegetation on water fluxes through the landscape.Numerical experiments were conducted to assimilate the ASAR data into the DHSVM and in situ soil moisture at the middle reaches of the Heihe River Basin from June20 to July 15,2008.The results indicated that EnKF is effective for assimilating ASAR observations into the hydrological model.Compared with the simulation and in situ observations,the assimilated results were significantly improved in the surface layer and root layer,and the soil moisture varied slightly in the deep layer.Additionally,EnKF is an efficient approach to handle the strongly nonlinear problem which is practical and effective for soil moisture estimation by assimilation of remote sensing data.Moreover,to improve the assimilation results,further studies on obtaining more reliable forcing data and model parameters and increasing the efficiency and accuracy of the remote sensing observations are needed,also improving estimation accuracy of model operator is important.展开更多
Aiming at improving the observation uncertainty caused by limited accuracy of sensors,and the uncertainty of observation source in clutters,through the dynamic combination of ensemble Kalman filter(EnKF) and probabili...Aiming at improving the observation uncertainty caused by limited accuracy of sensors,and the uncertainty of observation source in clutters,through the dynamic combination of ensemble Kalman filter(EnKF) and probabilistic data association(PDA),a novel probabilistic data association algorithm based on ensemble Kalman filter with observation iterated update is proposed.Firstly,combining with the advantages of data assimilation handling observation uncertainty in EnKF,an observation iterated update strategy is used to realize optimization of EnKF in structure.And the object is to further improve state estimation precision of nonlinear system.Secondly,the above algorithm is introduced to the framework of PDA,and the object is to increase reliability and stability of candidate echo acknowledgement.In addition,in order to decrease computation complexity in the combination of improved EnKF and PDA,the maximum observation iterated update mechanism is applied to the iteration of PDA.Finally,simulation results verify the feasibility and effectiveness of the proposed algorithm by a typical target tracking scene in clutters.展开更多
The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applica...The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applications to seamlessly determine position, velocity and attitude of the mobile platform. With low cost, small size, ligh weight and low power consumtion, the MEMS (Micro-Electro-Mechanical System) IMU and low cost GPS (Global Positioning System) receivers are now the trend in research and using for many applications. However, researchs in the literature indicated that the the performance of the low cost INS/GPS systems is still poor, particularly, in case of GNSS-noise environment. To overcome this problem, this research applies analytic contrains including non-holonomic constraint and zero velocity update in the data fusion engine such as Extended Kalman Filter to improve the performance of the system. The benefit of the proposed method will be demonstrated through experiments and data analysis.展开更多
In this paper,a mathematical model for target tracking using nonlinear scalar range sensors is formulated first.A time-shift sensor scheduling strategy is addressed on the basis of a k-barrier coverage protocol and al...In this paper,a mathematical model for target tracking using nonlinear scalar range sensors is formulated first.A time-shift sensor scheduling strategy is addressed on the basis of a k-barrier coverage protocol and all the sensors are divided into two classes of clusters,active cluster,and submissive cluster,for energy-saving.Then two types of time-shift nonlinear filters are proposed for both active and submissive clusters to estimate the trajectory of the moving target with disturbed dynamics.The stochastic stability of the two filters is analyzed.Finally,some numerical simulations are given to demonstrate the effectiveness of the new filters with a comparison of EKF.展开更多
Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UC...Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UCODE_2005 with the Ensemble Kalman Filter(EnKF) for their efficiency to inversely calculate and calibrate a hydraulic conductivity field based on hydraulic head data. A zonal, random heterogeneous conductivity field is calibrated by assimilating the time series of heads observed in monitoring wells. The study results indicate that the two inverse methods, UCODE_2005 and EnKF, could be used to calibrate the hydraulic conductivity field to a certain degree. More available observations and information about the conductivity field, more accurate inverse results will be obtained for the UCODE_2005. On the other hand, for a realistic zonal heterogeneous hydraulic conductivity field, EnKF can only efficiently determine the hydraulic conductivity field at the first several assimilated time steps. The results obtained by the UCODE_2005 look better than those by the EnKF. This is possibly due to the fact that the UCODE_2005 uses observed head data at every time step, while EnKF can only use observed heads at first several steps due to the filter divergence problem.展开更多
In this paper, a new state-parameter estimation approach is presented based on the dual ensemble Kalman smoother(DEn KS) and simple biosphere model(Si B2) to sequentially estimate both the soil properties and soil moi...In this paper, a new state-parameter estimation approach is presented based on the dual ensemble Kalman smoother(DEn KS) and simple biosphere model(Si B2) to sequentially estimate both the soil properties and soil moisture profile by assimilating surface soil moisture observations. The Arou observation station, located in the upper reaches of the Heihe River in northwestern China, was selected to test the proposed method. Three numeric experiments were designed and performed to analyze the influence of uncertainties in model parameters, atmospheric forcing, and the model's physical mechanics on soil moisture estimates. Several assimilation schemes based on the ensemble Kalman filter(En KF), ensemble Kalman smoother(En KS), and dual En KF(DEn KF) were also compared in this study. The results demonstrate that soil moisture and soil properties can be simultaneously estimated by state-parameter estimation methods, which can provide more accurate estimation of soil moisture than traditional filter methods such as En KF and En KS. The estimation accuracy of the model parameters decreased with increasing error sources. DEn KS outperformed DEn KF in estimating soil moisture in most cases, especially where few observations were available. This study demonstrates that the DEn KS approach is a useful and practical way to improve soil moisture estimation.展开更多
基金Project(2013AA06A411)supported by the National High Technology Research and Development Program of ChinaProject(CXZZ14_1374)supported by the Graduate Education Innovation Program of Jiangsu Province,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Pure inertial navigation system(INS) has divergent localization errors after a long time. In order to compensate the disadvantage, wireless sensor network(WSN) associated with the INS was applied to estimate the mobile target positioning. Taking traditional Kalman filter(KF) as the framework, the system equation of KF was established by the INS and the observation equation of position errors was built by the WSN. Meanwhile, the observation equation of velocity errors was established by the velocity difference between the INS and WSN, then the covariance matrix of Kalman filter measurement noise was adjusted with fuzzy inference system(FIS), and the fuzzy adaptive Kalman filter(FAKF) based on the INS/WSN was proposed. The simulation results show that the FAKF method has better accuracy and robustness than KF and EKF methods and shows good adaptive capacity with time-varying system noise. Finally, experimental results further prove that FAKF has the fast convergence error, in comparison with KF and EKF methods.
基金supported by the Provincial Science and Technology Development Program of Shandong under Grant No.2008GG10008001Key Technology Integration and Application Program of China Meteorological Administration,under Grant No.CMAGJ2011M32+1 种基金Forecaster Research Program of China Meteorological Administration,under Grant No.CMAYBY2012-031Science and Technology Research Programs of Shandong Provincial Meteorological Bureau,under Grant Nos.2012sdqxz03,2012sdqxz01,2010sdqxz01
文摘In this paper, a new bias estimation method is proposed and applied in a regional ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting (WRF) Model. The method is based on a homogeneous linear bias model, and the model bias is estimated using statistics at each assimilation cycle, which is different from the state augmentation methods proposed in pre- vious literatures. The new method provides a good estimation for the model bias of some specific variables, such as sea level pres- sure (SLP). A series of numerical experiments with EnKF are performed to examine the new method under a severe weather condi- tion. Results show the positive effect of the method on the forecasting of circulation pattern and meso-scale systems, and the reduc- tion of analysis errors. The background error covarianee structures of surface variables and the effects of model system bias on EnKF are also studied under the error covariance structures and a new concept 'correlation scale' is introduced. However, the new method needs further evaluation with more cases of assimilation.
基金Under the auspices of National Natural Science Foundation for Young Scientists of China(No.41101321)Major State Basic Research Development Program of China(No.2007CB714407)Key Projects in the National Science & Technology Pillar Program(No.2009BAG18B01,2012BAH28B03)
文摘Active microwave remote sensing data were used to calculate the near-surface soil moisture in the vegetated areas.In this study,Advanced Synthetic Aperture Radar(ASAR)observations of surface soil moisture content were used in a data assimilation framework to improve the estimation of the soil moisture profile at the middle reaches of the Heihe River Basin,Northwest China.A one-dimensional soil moisture assimilation system based on the ensemble Kalman filter(EnKF),the forward radiative transfer model,crop model,and the Distributed Hydrology-Soil-Vegetation Model(DHSVM)was developed.The crop model,as a semi-empirical model,was used to estimate the surface backscattering of vegetated areas.The DHSVM is a distributed hydrology-vegetation model that explicitly represents the effects of topography and vegetation on water fluxes through the landscape.Numerical experiments were conducted to assimilate the ASAR data into the DHSVM and in situ soil moisture at the middle reaches of the Heihe River Basin from June20 to July 15,2008.The results indicated that EnKF is effective for assimilating ASAR observations into the hydrological model.Compared with the simulation and in situ observations,the assimilated results were significantly improved in the surface layer and root layer,and the soil moisture varied slightly in the deep layer.Additionally,EnKF is an efficient approach to handle the strongly nonlinear problem which is practical and effective for soil moisture estimation by assimilation of remote sensing data.Moreover,to improve the assimilation results,further studies on obtaining more reliable forcing data and model parameters and increasing the efficiency and accuracy of the remote sensing observations are needed,also improving estimation accuracy of model operator is important.
基金Supported by the National Nature Science Foundation of China(No.61300214)the Science and Technology Innovation Team Support Plan of Education Department of Henan Province(No.13IRTSTHN021)+5 种基金the National Natural Science Foundation of Henan Province(No.132300410148)the Science and Technology Research Key Project of Education Department of Henan Province(No.13A413066)the Postdoctoral Science Foundation of China(No.2014M551999)the Funding Scheme of Young Key Teacher of Henan Province Universities(No.2013GGJS-026)the Postdoctoral Fund of Henan Province(No.2013029)the Outstanding Young Cultivation Foundation of Henan University(No.0000A40366)
文摘Aiming at improving the observation uncertainty caused by limited accuracy of sensors,and the uncertainty of observation source in clutters,through the dynamic combination of ensemble Kalman filter(EnKF) and probabilistic data association(PDA),a novel probabilistic data association algorithm based on ensemble Kalman filter with observation iterated update is proposed.Firstly,combining with the advantages of data assimilation handling observation uncertainty in EnKF,an observation iterated update strategy is used to realize optimization of EnKF in structure.And the object is to further improve state estimation precision of nonlinear system.Secondly,the above algorithm is introduced to the framework of PDA,and the object is to increase reliability and stability of candidate echo acknowledgement.In addition,in order to decrease computation complexity in the combination of improved EnKF and PDA,the maximum observation iterated update mechanism is applied to the iteration of PDA.Finally,simulation results verify the feasibility and effectiveness of the proposed algorithm by a typical target tracking scene in clutters.
文摘The integration of GNSS (Global Navigation Satellite System) and INS (Inertial Navigation System) using IMU (Inertial Measurement Unit) is now widely used for MMS (Mobile Mapping System) and navigation applications to seamlessly determine position, velocity and attitude of the mobile platform. With low cost, small size, ligh weight and low power consumtion, the MEMS (Micro-Electro-Mechanical System) IMU and low cost GPS (Global Positioning System) receivers are now the trend in research and using for many applications. However, researchs in the literature indicated that the the performance of the low cost INS/GPS systems is still poor, particularly, in case of GNSS-noise environment. To overcome this problem, this research applies analytic contrains including non-holonomic constraint and zero velocity update in the data fusion engine such as Extended Kalman Filter to improve the performance of the system. The benefit of the proposed method will be demonstrated through experiments and data analysis.
基金supported by the National Natural Science Foundation of China under Grant No.61104104the Scientific Research Foundation for the Returned Overseas Chinese ScholarsState Education Ministry of China and the Program for New Century Excellent Talents in University under Grant No.NCET-13-0091
文摘In this paper,a mathematical model for target tracking using nonlinear scalar range sensors is formulated first.A time-shift sensor scheduling strategy is addressed on the basis of a k-barrier coverage protocol and all the sensors are divided into two classes of clusters,active cluster,and submissive cluster,for energy-saving.Then two types of time-shift nonlinear filters are proposed for both active and submissive clusters to estimate the trajectory of the moving target with disturbed dynamics.The stochastic stability of the two filters is analyzed.Finally,some numerical simulations are given to demonstrate the effectiveness of the new filters with a comparison of EKF.
基金supported by the Basic Research Funds for the Central Universities (Grant No. 2652015116)the National Natural Science Foundation of China (Grant Nos. 51209187, 41530316 & 91125024)+1 种基金the National Key Research and Development Program of China (Grant No. 2016YFC0402805)the Beijing Higher Education Young Elite Teacher Project (Grant No. YETP0653)
文摘Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UCODE_2005 with the Ensemble Kalman Filter(EnKF) for their efficiency to inversely calculate and calibrate a hydraulic conductivity field based on hydraulic head data. A zonal, random heterogeneous conductivity field is calibrated by assimilating the time series of heads observed in monitoring wells. The study results indicate that the two inverse methods, UCODE_2005 and EnKF, could be used to calibrate the hydraulic conductivity field to a certain degree. More available observations and information about the conductivity field, more accurate inverse results will be obtained for the UCODE_2005. On the other hand, for a realistic zonal heterogeneous hydraulic conductivity field, EnKF can only efficiently determine the hydraulic conductivity field at the first several assimilated time steps. The results obtained by the UCODE_2005 look better than those by the EnKF. This is possibly due to the fact that the UCODE_2005 uses observed head data at every time step, while EnKF can only use observed heads at first several steps due to the filter divergence problem.
基金supported by the Natural National Science Foundation of China(Grant Nos.91325106&41271358)the Hundred Talent Program of the Chinese Academy of Sciences(Grant No.29Y127D01)+1 种基金the Cross-disciplinary Collaborative Teams Program for ScienceTechnology and Innovation of the Chinese Academy of Sciences
文摘In this paper, a new state-parameter estimation approach is presented based on the dual ensemble Kalman smoother(DEn KS) and simple biosphere model(Si B2) to sequentially estimate both the soil properties and soil moisture profile by assimilating surface soil moisture observations. The Arou observation station, located in the upper reaches of the Heihe River in northwestern China, was selected to test the proposed method. Three numeric experiments were designed and performed to analyze the influence of uncertainties in model parameters, atmospheric forcing, and the model's physical mechanics on soil moisture estimates. Several assimilation schemes based on the ensemble Kalman filter(En KF), ensemble Kalman smoother(En KS), and dual En KF(DEn KF) were also compared in this study. The results demonstrate that soil moisture and soil properties can be simultaneously estimated by state-parameter estimation methods, which can provide more accurate estimation of soil moisture than traditional filter methods such as En KF and En KS. The estimation accuracy of the model parameters decreased with increasing error sources. DEn KS outperformed DEn KF in estimating soil moisture in most cases, especially where few observations were available. This study demonstrates that the DEn KS approach is a useful and practical way to improve soil moisture estimation.