期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于卡方核的正则化线性判别行人再识别算法 被引量:1
1
作者 雷大江 滕君 +1 位作者 王明达 吴渝 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第9期66-76,共11页
针对行人再识别过程中存在获取的训练样本较少,真实样本分布不一定线性可分和算法识别率低的问题,提出基于卡方核的正则化线性判别分析行人再识别算法(KRLDA,kemel regularized linear discriminant analysis)。该算法首先利用核函数将... 针对行人再识别过程中存在获取的训练样本较少,真实样本分布不一定线性可分和算法识别率低的问题,提出基于卡方核的正则化线性判别分析行人再识别算法(KRLDA,kemel regularized linear discriminant analysis)。该算法首先利用核函数将样本从线性不可分的原始空间映射到线性可分的高维特征空间,然后在高维空间中构造描述数据之间邻近关系的散度矩阵,再利用正则化线性判别分析获得高维到低维空间的投影矩阵,使得数据在低维空间能够保持高维空间的可分性,从而提升行人再识别算法的识别率。在VIPeR、iLIDS、CAVIAR和3DPeS数据集上,实验结果表明所提出的算法具有较高识别率。 展开更多
关键词 行人再识别 卡方核 正则化线性判别分析 函数
下载PDF
组合核函数优化的稀疏最小二乘支持向量机 被引量:2
2
作者 李咏晋 赵拥军 赵闯 《太赫兹科学与电子信息学报》 2017年第3期489-495,共7页
针对传统最小二乘支持向量机(LSSVM)稀疏性较差的问题,在传统支持向量机的基础上提出了新的LSSVM模型,并对其进行优化。利用选主元Cholesky分解,进行迭代操作,简化求解过程;利用径向基-卡方组合核函数,提高核函数的稀疏性;最后利用遗传... 针对传统最小二乘支持向量机(LSSVM)稀疏性较差的问题,在传统支持向量机的基础上提出了新的LSSVM模型,并对其进行优化。利用选主元Cholesky分解,进行迭代操作,简化求解过程;利用径向基-卡方组合核函数,提高核函数的稀疏性;最后利用遗传算法,对组合核函数与支持向量机的参数寻优,解决了传统LSSVM在大样本情况下稀疏性较差,求解时间过长的问题,提高了LSSVM的泛性与精确度。仿真实验证明了所提出的模型是有效的。 展开更多
关键词 支持向量机 选主元Cholesky分解 组合函数 卡方核函数
下载PDF
扩散式最大相关熵准则变步长仿射投影符号算法
3
作者 林云 黄桢航 高凡 《计算机科学》 CSCD 北大核心 2020年第6期242-246,共5页
目前大多数分布式估计算法以最小均方误差准则作为代价函数,在脉冲噪声下性能恶化乃至发散。扩散式仿射投影符号算法(Diffusion Affine Projection Sign Algorithm,DAPSA)以L 1范数为代价函数,在脉冲噪声环境中具有良好的鲁棒性,并且具... 目前大多数分布式估计算法以最小均方误差准则作为代价函数,在脉冲噪声下性能恶化乃至发散。扩散式仿射投影符号算法(Diffusion Affine Projection Sign Algorithm,DAPSA)以L 1范数为代价函数,在脉冲噪声环境中具有良好的鲁棒性,并且具有较快的收敛速度。然而,固定步长的DAPSA在保持较大的初始收敛速度和较低的稳态误差之间存在矛盾。为降低非高斯噪声环境下DAPSA的稳态误差,同时仍保持较快的初始收敛速度,文中提出了一种扩散式最大相关熵准则变步长仿射投影符号算法(Diffusion Maximum Correntropy Criterion Variable StepSize Affine Projection Sign Algorithm,DMCCVSS-APSA)。首先,该算法利用改进的卡方核作为核函数,自适应更新算法每次迭代过程中的步长取值,在取得较快初始收敛速度的同时可有效降低稳态误差;然后,提出了一种基于系统先验误差的自适应动态范围方法,以进一步降低稳态误差;最后,通过改进卡方核与改进高斯核函数的对比实验,DMCCVSS-APSA与其他分布式算法的对比实验、不同脉冲噪声环境下DMCCVSS-APSA和DAPSA的对比实验,验证了所提算法的性能表现。仿真结果表明,DMCCVSS-APSA与对比算法相比表现良好,在相似的初始收敛速度下稳态误差降低了5dB以上。实验数据充分说明,在固定步长的DAPSA的基础上提出的变步长方法和自适应动态范围方法,具有对脉冲噪声的强鲁棒性的同时,能有效降低稳态误差,提升了分布式仿射投影类算法的性能表现。最后指出所提算法在ATC式联合方式和最优灵敏度的取值上需要进一步的研究。 展开更多
关键词 分布式自适应估计 扩散式 最大相关熵 卡方核 冲击噪声
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部