Studying different theoretical properties of epidemiological models has been widely addressed, while numerical studies and especially the calibration of models, which are often complicated and loaded with a high numbe...Studying different theoretical properties of epidemiological models has been widely addressed, while numerical studies and especially the calibration of models, which are often complicated and loaded with a high number of unknown parameters, against mea- sured data have received less attention. In this paper, we describe how a combination of simulated data and Markov Chain Monte Carlo (MCMC) methods can be used to study the identifiability of model parameters with different type of measurements. Three known models are used as case studies to illustrate the importance of parameter identi- fiability: a basic SIR model, an influenza model with vaccination and treatment and a HIV-Malaria co-infection model. The analysis reveals that calibration of complex models commonly studied in mathematical epidemiology, such as the HIV Malaria co-dynamics model, can be difficult or impossible, even if the system would be fully observed. The pre- sented approach provides a tool for design and optimization of real-life field campaigns of collecting data, as well as for model selection.展开更多
文摘Studying different theoretical properties of epidemiological models has been widely addressed, while numerical studies and especially the calibration of models, which are often complicated and loaded with a high number of unknown parameters, against mea- sured data have received less attention. In this paper, we describe how a combination of simulated data and Markov Chain Monte Carlo (MCMC) methods can be used to study the identifiability of model parameters with different type of measurements. Three known models are used as case studies to illustrate the importance of parameter identi- fiability: a basic SIR model, an influenza model with vaccination and treatment and a HIV-Malaria co-infection model. The analysis reveals that calibration of complex models commonly studied in mathematical epidemiology, such as the HIV Malaria co-dynamics model, can be difficult or impossible, even if the system would be fully observed. The pre- sented approach provides a tool for design and optimization of real-life field campaigns of collecting data, as well as for model selection.