The vacuum system of today's tokamak devices is designed to meet the operational requirements of the experiments. The operation can be divided into five modes, (1) pumping down and leak detecting of the vacuum vess...The vacuum system of today's tokamak devices is designed to meet the operational requirements of the experiments. The operation can be divided into five modes, (1) pumping down and leak detecting of the vacuum vessel, (2) baking, (3) plasma-facing component (PFC) conditioning, (4)evacuating and controlling of the particles at plasma edge, (5) plasma discharge experiments.展开更多
A 3-D field line integration code, TRIP3D has been modified to model stochastic magnetic perturbation produced by a resistive wall mode, error field ( RWMEF ) coil in the NSTX tokamak with very low aspect ratio. The...A 3-D field line integration code, TRIP3D has been modified to model stochastic magnetic perturbation produced by a resistive wall mode, error field ( RWMEF ) coil in the NSTX tokamak with very low aspect ratio. The RWMEF-coil has two turns, which may produce stochastic fields with the toroidal mode number of n = 1 or 3. In this study, it is found that the stochastic field of n = 3 is larger than that of n=-1 for the same coil current. Two divertor discharges with lower single null ( LSN ) and double null ( DN ) configurations in the NSTX have been modeled with different RWMEF-coil currents and toroidal modes.展开更多
文摘The vacuum system of today's tokamak devices is designed to meet the operational requirements of the experiments. The operation can be divided into five modes, (1) pumping down and leak detecting of the vacuum vessel, (2) baking, (3) plasma-facing component (PFC) conditioning, (4)evacuating and controlling of the particles at plasma edge, (5) plasma discharge experiments.
文摘A 3-D field line integration code, TRIP3D has been modified to model stochastic magnetic perturbation produced by a resistive wall mode, error field ( RWMEF ) coil in the NSTX tokamak with very low aspect ratio. The RWMEF-coil has two turns, which may produce stochastic fields with the toroidal mode number of n = 1 or 3. In this study, it is found that the stochastic field of n = 3 is larger than that of n=-1 for the same coil current. Two divertor discharges with lower single null ( LSN ) and double null ( DN ) configurations in the NSTX have been modeled with different RWMEF-coil currents and toroidal modes.