In order to improve tracking accuracy when initial estimate is inaccurate or outliers exist,a bearings-only tracking approach called the robust range-parameterized cubature Kalman filter(RRPCKF)was proposed.Firstly,th...In order to improve tracking accuracy when initial estimate is inaccurate or outliers exist,a bearings-only tracking approach called the robust range-parameterized cubature Kalman filter(RRPCKF)was proposed.Firstly,the robust extremal rule based on the pollution distribution was introduced to the cubature Kalman filter(CKF)framework.The improved Turkey weight function was subsequently constructed to identify the outliers whose weights were reduced by establishing equivalent innovation covariance matrix in the CKF.Furthermore,the improved range-parameterize(RP)strategy which divides the filter into some weighted robust CKFs each with a different initial estimate was utilized to solve the fuzzy initial estimation problem efficiently.Simulations show that the result of the RRPCKF is more accurate and more robust whether outliers exist or not,whereas that of the conventional algorithms becomes distorted seriously when outliers appear.展开更多
Mobile robot systems performing simultaneous localization and mapping(SLAM) are generally plagued by non-Gaussian noise.To improve both accuracy and robustness under non-Gaussian measurement noise,a robust SLAM algori...Mobile robot systems performing simultaneous localization and mapping(SLAM) are generally plagued by non-Gaussian noise.To improve both accuracy and robustness under non-Gaussian measurement noise,a robust SLAM algorithm is proposed.It is based on the square-root cubature Kalman filter equipped with a Huber' s generalized maximum likelihood estimator(GM-estimator).In particular,the square-root cubature rule is applied to propagate the robot state vector and covariance matrix in the time update,the measurement update and the new landmark initialization stages of the SLAM.Moreover,gain weight matrices with respect to the measurement residuals are calculated by utilizing Huber' s technique in the measurement update step.The measurement outliers are suppressed by lower Kalman gains as merging into the system.The proposed algorithm can achieve better performance under the condition of non-Gaussian measurement noise in comparison with benchmark algorithms.The simulation results demonstrate the advantages of the proposed SLAM algorithm.展开更多
The paper is going to introduce some methods about select distributional model、select an estimation technique、iterate to minimize objective function、record estimated parameters、select one or more models which had ...The paper is going to introduce some methods about select distributional model、select an estimation technique、iterate to minimize objective function、record estimated parameters、select one or more models which had low value of the objective function and test of fit of selected model by empirical distribution function、mean of residual life function、minimum distance and minimum chi square.This should prove especially useful to those readers who want to set up a computer system to perform the model fitting operation.展开更多
The performance of the conventional Kalman filter depends on process and measurement noise statistics given by the system model and measurements.The conventional Kalman filter is usually used for a linear system,but i...The performance of the conventional Kalman filter depends on process and measurement noise statistics given by the system model and measurements.The conventional Kalman filter is usually used for a linear system,but it should not be used for estimating the state of a nonlinear system such as a satellite motion because it is difficult to obtain the desired estimation results.The linearized Kalman filtering approach and the extended Kalman filtering approach have been proposed for a general nonlinear system.The equations of satellite motion are described.The satellite motion states are estimated,and the relevant estimation errors are calculated through the estimation algorithms of the both above mentioned approaches implemented in Matlab are estimated.The performances of the extended Kalman filter and the linearized Kalman filter are compared.The simulation results show that the extended Kalman filter is much better than the linearized Kalman filter at the aspect of estimation effect.展开更多
State estimation of biological process variables directly influences the performance of on-line monitoring and op- timal control for fermentation process. A novel nonlinear state estimation method for fermentation pro...State estimation of biological process variables directly influences the performance of on-line monitoring and op- timal control for fermentation process. A novel nonlinear state estimation method for fermentation process is proposed using cubature Kalman filter (CKF) to incorporate delayed measurements. The square-root version of CI(F (SCKF) algorithm is given and the system with delayed measurements is described. On this basis, the sample-state augmentation method for the SCKF algorithm is provided and the implementation of the proposed algorithm is constructed. Then a nonlinear state space model for fermentation process is established and the SCKF algorithm incorporating delayed measurements based on fermentation process model is presented to implement the nonlinear state estimation. Finally, the proposed nonlinear state estimation methodology is applied to the state estimation for penicillin and industrial yeast fermentation processes. The simulation results show that the on-fine state estimation for fermentation process can be achieved by the proposed method with higher esti- mation accuracy and better stability.展开更多
In this paper, a new bias estimation method is proposed and applied in a regional ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting (WRF) Model. The method is based on a homogeneous linea...In this paper, a new bias estimation method is proposed and applied in a regional ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting (WRF) Model. The method is based on a homogeneous linear bias model, and the model bias is estimated using statistics at each assimilation cycle, which is different from the state augmentation methods proposed in pre- vious literatures. The new method provides a good estimation for the model bias of some specific variables, such as sea level pres- sure (SLP). A series of numerical experiments with EnKF are performed to examine the new method under a severe weather condi- tion. Results show the positive effect of the method on the forecasting of circulation pattern and meso-scale systems, and the reduc- tion of analysis errors. The background error covarianee structures of surface variables and the effects of model system bias on EnKF are also studied under the error covariance structures and a new concept 'correlation scale' is introduced. However, the new method needs further evaluation with more cases of assimilation.展开更多
This paper present a simulation study of an evolutionary algorithms, Particle Swarm Optimization PSO algorithm to optimize likelihood function of ARMA(1, 1) model, where maximizing likelihood function is equivalent ...This paper present a simulation study of an evolutionary algorithms, Particle Swarm Optimization PSO algorithm to optimize likelihood function of ARMA(1, 1) model, where maximizing likelihood function is equivalent to maximizing its logarithm, so the objective function 'obj.fun' is maximizing log-likelihood function. Monte Carlo method adapted for implementing and designing the experiments of this simulation. This study including a comparison among three versions of PSO algorithm “Constriction coefficient CCPSO, Inertia weight IWPSO, and Fully Informed FIPSO”, the experiments designed by setting different values of model parameters al, bs sample size n, moreover the parameters of PSO algorithms. MSE used as test statistic to measure the efficiency PSO to estimate model. The results show the ability of PSO to estimate ARMA' s parameters, and the minimum values of MSE getting for COPSO.展开更多
We consider the periodic generalized autoregressive conditional heteroskedasticity(P-GARCH) process and propose a robust estimator by composite quantile regression. We study some useful properties about the P-GARCH mo...We consider the periodic generalized autoregressive conditional heteroskedasticity(P-GARCH) process and propose a robust estimator by composite quantile regression. We study some useful properties about the P-GARCH model. Under some mild conditions, we establish the asymptotic results of proposed estimator.The Monte Carlo simulation is presented to assess the performance of proposed estimator. Numerical study results show that our proposed estimation outperforms other existing methods for heavy tailed distributions.The proposed methodology is also illustrated by Va R on stock price data.展开更多
In this paper, a new state-parameter estimation approach is presented based on the dual ensemble Kalman smoother(DEn KS) and simple biosphere model(Si B2) to sequentially estimate both the soil properties and soil moi...In this paper, a new state-parameter estimation approach is presented based on the dual ensemble Kalman smoother(DEn KS) and simple biosphere model(Si B2) to sequentially estimate both the soil properties and soil moisture profile by assimilating surface soil moisture observations. The Arou observation station, located in the upper reaches of the Heihe River in northwestern China, was selected to test the proposed method. Three numeric experiments were designed and performed to analyze the influence of uncertainties in model parameters, atmospheric forcing, and the model's physical mechanics on soil moisture estimates. Several assimilation schemes based on the ensemble Kalman filter(En KF), ensemble Kalman smoother(En KS), and dual En KF(DEn KF) were also compared in this study. The results demonstrate that soil moisture and soil properties can be simultaneously estimated by state-parameter estimation methods, which can provide more accurate estimation of soil moisture than traditional filter methods such as En KF and En KS. The estimation accuracy of the model parameters decreased with increasing error sources. DEn KS outperformed DEn KF in estimating soil moisture in most cases, especially where few observations were available. This study demonstrates that the DEn KS approach is a useful and practical way to improve soil moisture estimation.展开更多
基金Projects(51377172,51577191) supported by the National Natural Science Foundation of China
文摘In order to improve tracking accuracy when initial estimate is inaccurate or outliers exist,a bearings-only tracking approach called the robust range-parameterized cubature Kalman filter(RRPCKF)was proposed.Firstly,the robust extremal rule based on the pollution distribution was introduced to the cubature Kalman filter(CKF)framework.The improved Turkey weight function was subsequently constructed to identify the outliers whose weights were reduced by establishing equivalent innovation covariance matrix in the CKF.Furthermore,the improved range-parameterize(RP)strategy which divides the filter into some weighted robust CKFs each with a different initial estimate was utilized to solve the fuzzy initial estimation problem efficiently.Simulations show that the result of the RRPCKF is more accurate and more robust whether outliers exist or not,whereas that of the conventional algorithms becomes distorted seriously when outliers appear.
基金Supported by the National High Technology Research and Development Program of China(2010AA09Z104)the Fundamental Research Funds of the Zhejiang University(2014FZA5020)
文摘Mobile robot systems performing simultaneous localization and mapping(SLAM) are generally plagued by non-Gaussian noise.To improve both accuracy and robustness under non-Gaussian measurement noise,a robust SLAM algorithm is proposed.It is based on the square-root cubature Kalman filter equipped with a Huber' s generalized maximum likelihood estimator(GM-estimator).In particular,the square-root cubature rule is applied to propagate the robot state vector and covariance matrix in the time update,the measurement update and the new landmark initialization stages of the SLAM.Moreover,gain weight matrices with respect to the measurement residuals are calculated by utilizing Huber' s technique in the measurement update step.The measurement outliers are suppressed by lower Kalman gains as merging into the system.The proposed algorithm can achieve better performance under the condition of non-Gaussian measurement noise in comparison with benchmark algorithms.The simulation results demonstrate the advantages of the proposed SLAM algorithm.
文摘The paper is going to introduce some methods about select distributional model、select an estimation technique、iterate to minimize objective function、record estimated parameters、select one or more models which had low value of the objective function and test of fit of selected model by empirical distribution function、mean of residual life function、minimum distance and minimum chi square.This should prove especially useful to those readers who want to set up a computer system to perform the model fitting operation.
文摘The performance of the conventional Kalman filter depends on process and measurement noise statistics given by the system model and measurements.The conventional Kalman filter is usually used for a linear system,but it should not be used for estimating the state of a nonlinear system such as a satellite motion because it is difficult to obtain the desired estimation results.The linearized Kalman filtering approach and the extended Kalman filtering approach have been proposed for a general nonlinear system.The equations of satellite motion are described.The satellite motion states are estimated,and the relevant estimation errors are calculated through the estimation algorithms of the both above mentioned approaches implemented in Matlab are estimated.The performances of the extended Kalman filter and the linearized Kalman filter are compared.The simulation results show that the extended Kalman filter is much better than the linearized Kalman filter at the aspect of estimation effect.
基金Supported by the National Natural Science Foundation of China(61503019)the Beijing Natural Science Foundation(4152041)Beijing Higher Education Young Elite Teacher Project(YETP0504)
文摘State estimation of biological process variables directly influences the performance of on-line monitoring and op- timal control for fermentation process. A novel nonlinear state estimation method for fermentation process is proposed using cubature Kalman filter (CKF) to incorporate delayed measurements. The square-root version of CI(F (SCKF) algorithm is given and the system with delayed measurements is described. On this basis, the sample-state augmentation method for the SCKF algorithm is provided and the implementation of the proposed algorithm is constructed. Then a nonlinear state space model for fermentation process is established and the SCKF algorithm incorporating delayed measurements based on fermentation process model is presented to implement the nonlinear state estimation. Finally, the proposed nonlinear state estimation methodology is applied to the state estimation for penicillin and industrial yeast fermentation processes. The simulation results show that the on-fine state estimation for fermentation process can be achieved by the proposed method with higher esti- mation accuracy and better stability.
基金supported by the Provincial Science and Technology Development Program of Shandong under Grant No.2008GG10008001Key Technology Integration and Application Program of China Meteorological Administration,under Grant No.CMAGJ2011M32+1 种基金Forecaster Research Program of China Meteorological Administration,under Grant No.CMAYBY2012-031Science and Technology Research Programs of Shandong Provincial Meteorological Bureau,under Grant Nos.2012sdqxz03,2012sdqxz01,2010sdqxz01
文摘In this paper, a new bias estimation method is proposed and applied in a regional ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting (WRF) Model. The method is based on a homogeneous linear bias model, and the model bias is estimated using statistics at each assimilation cycle, which is different from the state augmentation methods proposed in pre- vious literatures. The new method provides a good estimation for the model bias of some specific variables, such as sea level pres- sure (SLP). A series of numerical experiments with EnKF are performed to examine the new method under a severe weather condi- tion. Results show the positive effect of the method on the forecasting of circulation pattern and meso-scale systems, and the reduc- tion of analysis errors. The background error covarianee structures of surface variables and the effects of model system bias on EnKF are also studied under the error covariance structures and a new concept 'correlation scale' is introduced. However, the new method needs further evaluation with more cases of assimilation.
文摘This paper present a simulation study of an evolutionary algorithms, Particle Swarm Optimization PSO algorithm to optimize likelihood function of ARMA(1, 1) model, where maximizing likelihood function is equivalent to maximizing its logarithm, so the objective function 'obj.fun' is maximizing log-likelihood function. Monte Carlo method adapted for implementing and designing the experiments of this simulation. This study including a comparison among three versions of PSO algorithm “Constriction coefficient CCPSO, Inertia weight IWPSO, and Fully Informed FIPSO”, the experiments designed by setting different values of model parameters al, bs sample size n, moreover the parameters of PSO algorithms. MSE used as test statistic to measure the efficiency PSO to estimate model. The results show the ability of PSO to estimate ARMA' s parameters, and the minimum values of MSE getting for COPSO.
基金supported by National Natural Science Foundation of China(Grant No.11371354)Key Laboratory of Random Complex Structures and Data Science+2 种基金Chinese Academy of Sciences(Grant No.2008DP173182)National Center for Mathematics and Interdisciplinary SciencesChinese Academy of Sciences
文摘We consider the periodic generalized autoregressive conditional heteroskedasticity(P-GARCH) process and propose a robust estimator by composite quantile regression. We study some useful properties about the P-GARCH model. Under some mild conditions, we establish the asymptotic results of proposed estimator.The Monte Carlo simulation is presented to assess the performance of proposed estimator. Numerical study results show that our proposed estimation outperforms other existing methods for heavy tailed distributions.The proposed methodology is also illustrated by Va R on stock price data.
基金supported by the Natural National Science Foundation of China(Grant Nos.91325106&41271358)the Hundred Talent Program of the Chinese Academy of Sciences(Grant No.29Y127D01)+1 种基金the Cross-disciplinary Collaborative Teams Program for ScienceTechnology and Innovation of the Chinese Academy of Sciences
文摘In this paper, a new state-parameter estimation approach is presented based on the dual ensemble Kalman smoother(DEn KS) and simple biosphere model(Si B2) to sequentially estimate both the soil properties and soil moisture profile by assimilating surface soil moisture observations. The Arou observation station, located in the upper reaches of the Heihe River in northwestern China, was selected to test the proposed method. Three numeric experiments were designed and performed to analyze the influence of uncertainties in model parameters, atmospheric forcing, and the model's physical mechanics on soil moisture estimates. Several assimilation schemes based on the ensemble Kalman filter(En KF), ensemble Kalman smoother(En KS), and dual En KF(DEn KF) were also compared in this study. The results demonstrate that soil moisture and soil properties can be simultaneously estimated by state-parameter estimation methods, which can provide more accurate estimation of soil moisture than traditional filter methods such as En KF and En KS. The estimation accuracy of the model parameters decreased with increasing error sources. DEn KS outperformed DEn KF in estimating soil moisture in most cases, especially where few observations were available. This study demonstrates that the DEn KS approach is a useful and practical way to improve soil moisture estimation.