Ferromagnetism is induced in pure TiO2 single crystals by oxygen ion irradiation. The ferro- magnetism is observed up to room temperature and is with weak temperature dependence. By combining X-ray diffraction, Ruther...Ferromagnetism is induced in pure TiO2 single crystals by oxygen ion irradiation. The ferro- magnetism is observed up to room temperature and is with weak temperature dependence. By combining X-ray diffraction, Rutherford backseattering/channelling, Raman scattering, and electron-spin resonance spectroscopy, supperconducting quantum interference device, displacement per atom, we measured tile lattice damage accumulation with increasing flu- ences. A defect complex, i.e., Ti3+ on the substitutional accoiflpanied by oxygen vacancies, has been identified in the irradiated Ti02. This kind of defect complex results in a local (TiO6-x) stretching Raman mode. We elucidate that Ti3+ with one unpaired 3d electron provide the local magnetic moments.展开更多
文摘Ferromagnetism is induced in pure TiO2 single crystals by oxygen ion irradiation. The ferro- magnetism is observed up to room temperature and is with weak temperature dependence. By combining X-ray diffraction, Rutherford backseattering/channelling, Raman scattering, and electron-spin resonance spectroscopy, supperconducting quantum interference device, displacement per atom, we measured tile lattice damage accumulation with increasing flu- ences. A defect complex, i.e., Ti3+ on the substitutional accoiflpanied by oxygen vacancies, has been identified in the irradiated Ti02. This kind of defect complex results in a local (TiO6-x) stretching Raman mode. We elucidate that Ti3+ with one unpaired 3d electron provide the local magnetic moments.