Graphdiyne(GDY)has attracted considerable attention as a new two-dimensional(2D)carbon hybrid material because of its good conductivity,adjustable electronic structure,and special electron transfer enhancement propert...Graphdiyne(GDY)has attracted considerable attention as a new two-dimensional(2D)carbon hybrid material because of its good conductivity,adjustable electronic structure,and special electron transfer enhancement properties.GDY has great potential in the field of photocatalytic water splitting for hydrogen evolution,owing to its unique properties.In this study,GDY was successfully prepared by the mechanochemical coupling of precursors C_(6)Br_(6) and CaC_(2) using a ball-milling approach.The prepared GDY,especially its microstructure and composition,was well characterized using different techniques such as X-ray diffraction,scanning electron microscopy,transmission electron microscopy,X-ray photoelectron spectroscopy(XPS),Fourier-transform infrared,and Raman characterization techniques.By exploiting the unique two-dimensional(2D)structure and outstanding light absorption properties of GDY,GDY/CdSe 2D/0D heterojunctions were successfully established and applied to photocatalytic hydrogen evolution.The hydrogen evolution activity of GDY/CdSe-20,a type of composite material,reached 6470μmol g^(-1) h^(-1),which is 461 and 40 times higher than that of GDY and CdSe,respectively.Moreover,the fine electrical conductivity of GDY enabled rapid and effective transfer of the photogenerated electrons in CdSe into the hydrogen evolution reaction.The transfer path of the photogenerated electrons was studied through XPS with in situ irradiation,and a reasonable mechanism for the hydrogen evolution reaction was proposed.This study provides a feasible approach for the large-scale preparation of GDY and demonstrates the prospects of GDY in the field of photocatalysis.展开更多
The selective hydrogenation of halogenated nitrobenzene over noble metal catalysts(Pd, Pt, and Ir) has attracted much attention owing to its high efficiency and environmental friendliness. However, the effect of size ...The selective hydrogenation of halogenated nitrobenzene over noble metal catalysts(Pd, Pt, and Ir) has attracted much attention owing to its high efficiency and environmental friendliness. However, the effect of size on the catalytic performance varies among different metal catalysts. In this study, sub-nano(<3 nm) Ir and Pd particles were prepared, and their catalytic properties for hydrogenation of halogenated nitrobenzene were evaluated.Results show that high selectivity(N 99%) was achieved over small Ir nanoparticles, in which the selectivity over the Pd with same size was much lower than that on Ir nanoparticles. Meanwhile, Ir and Pd have different hydrogen consumption rates and reaction rates. Density functional theory calculations showed that p-chloronitrobenzene(CNB) has different adsorption properties on Ir and Pd. The distance between oxygen(cholorine) and Ir is much shorter(longer) than that between oxygen and Pd. The reaction barriers of dechlorination of p-CNB and p-chloroaniline over different Ir models are much larger than those on Pd. Especially,lower coordination of Ir leads to larger barriers of dechlorination reaction. These theoretical results explain the difference between Ir and Pd on hydrogenation of halogenated nitrobenzene.展开更多
The biological activity against Staphylococcus aureus, and Eschericia coil were investigated implementing three series, the first series was l-phenyl-2-(4'-X-phenyl)-4-(2,4-dichlorophenyl)-1,3-butadiene, where X ...The biological activity against Staphylococcus aureus, and Eschericia coil were investigated implementing three series, the first series was l-phenyl-2-(4'-X-phenyl)-4-(2,4-dichlorophenyl)-1,3-butadiene, where X = H, CH3, OCH3, NH2, C1, F, NO2 and COOEt; the second was 3,4-dichlorochalcone series namely 3-(3,4-dichlorophenyl)-l-(4'-X-phenyl)-2-propen-l-one, where X = H, CH3, OCH3, NH2, CI, F, NO2 and CN; and the third one was 2,4-dichlorochalcone series namely 3-(2,4-dichlorophenyl)-l- (4'-X-phenyl)-2-propen-l-one, where X = H, CH3, OCH3, NH2, C1, F, NO2 and COOEt. MIC, MBC and the percentage of inhibition (activity) at 20 ~tg/mL, 15 μg/mL and 10μg/mL against Eschericia coli, and at 7.5 lag/mL, 5 μg/mL and 2.5 μg/mL against Staphylococcus aureus, were determined for each compound in the three series. Highest MIC activity against E. coli and S. aureus were given by 2,4-dichlorochalcone series. Butadiene series was similar in behavior to 2,4-dichlorochalcone series in MIC activity against S. aureus. Results of MBC revealed that compounds in the three series exerted high activity against both types of bacteria. Compounds substituted with nitro or nitril exhibited higher activity than other compounds in the three series. Percentage of inhibition of halogenated compounds (4'-C1 and 4'-F) was almost equal in every series. Compounds with substituents (4'-H and 4'-CH3) showed fluctuation in activity according to the nature of each series.展开更多
Monodisperse Pt nanoparticles(NPs) were prepared by reduction of platinum acetylacetonate in octadecene with the presence of Fe(CO)5. The synthesized nanocatalysts presented high activity and selectively for hydrogena...Monodisperse Pt nanoparticles(NPs) were prepared by reduction of platinum acetylacetonate in octadecene with the presence of Fe(CO)5. The synthesized nanocatalysts presented high activity and selectively for hydrogenation of ortho-halogenated nitrobenzene to the corresponding ortho-halogenated aniline under mild reaction conditions.展开更多
文摘Graphdiyne(GDY)has attracted considerable attention as a new two-dimensional(2D)carbon hybrid material because of its good conductivity,adjustable electronic structure,and special electron transfer enhancement properties.GDY has great potential in the field of photocatalytic water splitting for hydrogen evolution,owing to its unique properties.In this study,GDY was successfully prepared by the mechanochemical coupling of precursors C_(6)Br_(6) and CaC_(2) using a ball-milling approach.The prepared GDY,especially its microstructure and composition,was well characterized using different techniques such as X-ray diffraction,scanning electron microscopy,transmission electron microscopy,X-ray photoelectron spectroscopy(XPS),Fourier-transform infrared,and Raman characterization techniques.By exploiting the unique two-dimensional(2D)structure and outstanding light absorption properties of GDY,GDY/CdSe 2D/0D heterojunctions were successfully established and applied to photocatalytic hydrogen evolution.The hydrogen evolution activity of GDY/CdSe-20,a type of composite material,reached 6470μmol g^(-1) h^(-1),which is 461 and 40 times higher than that of GDY and CdSe,respectively.Moreover,the fine electrical conductivity of GDY enabled rapid and effective transfer of the photogenerated electrons in CdSe into the hydrogen evolution reaction.The transfer path of the photogenerated electrons was studied through XPS with in situ irradiation,and a reasonable mechanism for the hydrogen evolution reaction was proposed.This study provides a feasible approach for the large-scale preparation of GDY and demonstrates the prospects of GDY in the field of photocatalysis.
基金Supported by the National Natural Science Foundation of China(Nos.21473159 and91334013)
文摘The selective hydrogenation of halogenated nitrobenzene over noble metal catalysts(Pd, Pt, and Ir) has attracted much attention owing to its high efficiency and environmental friendliness. However, the effect of size on the catalytic performance varies among different metal catalysts. In this study, sub-nano(<3 nm) Ir and Pd particles were prepared, and their catalytic properties for hydrogenation of halogenated nitrobenzene were evaluated.Results show that high selectivity(N 99%) was achieved over small Ir nanoparticles, in which the selectivity over the Pd with same size was much lower than that on Ir nanoparticles. Meanwhile, Ir and Pd have different hydrogen consumption rates and reaction rates. Density functional theory calculations showed that p-chloronitrobenzene(CNB) has different adsorption properties on Ir and Pd. The distance between oxygen(cholorine) and Ir is much shorter(longer) than that between oxygen and Pd. The reaction barriers of dechlorination of p-CNB and p-chloroaniline over different Ir models are much larger than those on Pd. Especially,lower coordination of Ir leads to larger barriers of dechlorination reaction. These theoretical results explain the difference between Ir and Pd on hydrogenation of halogenated nitrobenzene.
文摘The biological activity against Staphylococcus aureus, and Eschericia coil were investigated implementing three series, the first series was l-phenyl-2-(4'-X-phenyl)-4-(2,4-dichlorophenyl)-1,3-butadiene, where X = H, CH3, OCH3, NH2, C1, F, NO2 and COOEt; the second was 3,4-dichlorochalcone series namely 3-(3,4-dichlorophenyl)-l-(4'-X-phenyl)-2-propen-l-one, where X = H, CH3, OCH3, NH2, CI, F, NO2 and CN; and the third one was 2,4-dichlorochalcone series namely 3-(2,4-dichlorophenyl)-l- (4'-X-phenyl)-2-propen-l-one, where X = H, CH3, OCH3, NH2, C1, F, NO2 and COOEt. MIC, MBC and the percentage of inhibition (activity) at 20 ~tg/mL, 15 μg/mL and 10μg/mL against Eschericia coli, and at 7.5 lag/mL, 5 μg/mL and 2.5 μg/mL against Staphylococcus aureus, were determined for each compound in the three series. Highest MIC activity against E. coli and S. aureus were given by 2,4-dichlorochalcone series. Butadiene series was similar in behavior to 2,4-dichlorochalcone series in MIC activity against S. aureus. Results of MBC revealed that compounds in the three series exerted high activity against both types of bacteria. Compounds substituted with nitro or nitril exhibited higher activity than other compounds in the three series. Percentage of inhibition of halogenated compounds (4'-C1 and 4'-F) was almost equal in every series. Compounds with substituents (4'-H and 4'-CH3) showed fluctuation in activity according to the nature of each series.
基金financially supported by the National Natural Science Foundation of China(21373006,51402203)the Natural Science Foundation of Jiangsu Province for Young Scholars(BK20140326)+1 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions(14KJB430021)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Monodisperse Pt nanoparticles(NPs) were prepared by reduction of platinum acetylacetonate in octadecene with the presence of Fe(CO)5. The synthesized nanocatalysts presented high activity and selectively for hydrogenation of ortho-halogenated nitrobenzene to the corresponding ortho-halogenated aniline under mild reaction conditions.