The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BA...The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BAMBP). Rb+ and Cs+ were enriched and separated effectively by precipitating Mg2+ before extraction and by scrubbing out K+ and Na+ repeatedly before stripping. The effects of the volume ratio of organic phase to aqueous extraction phase(O/A), alkalinity of aqueous phase(c(OH)-), interference from K+ and Mg2+, and ratio the volume of organic phase to aqueous scrubbing phase(O/A′) were investigated. The experimental brine was extracted optimally by 5-stage extraction with 1.0 mol/L t-BAMBP in SK, c(OH-)=1 mol/L, and O/A=1:1. The scrubbing yield of rubidium was only about 10.5% when the extraction solvent was washed 3 times with 1×10-4 mol/L Na OH at O/A′=1:0.5. After 5-stage countercurrent extraction, the final extraction yields of Rb+ and Cs+ reached 95.04% and 99.80%, respectively.展开更多
Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract li...Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract lithium from brine was obtained.The effects of the mole ratio of Al to Li and Ca content of Al-Ca alloy,the initial concentration of lithiumion ion in solution,reaction temperature and reaction time on the adsorption rate of lithium were studied,and the optimized process parameters were determined.The results show that the mole ratio of Al to Li and Ca content of Al-Ca alloy and reaction temperature have great influences on the precipitation rate of lithium.The precipitation rate of lithium reaches 94.6% under the optimal condition,indicating that Al-Ca alloy is suitable for the extraction of lithium from salt lake brine.展开更多
Proteomics was used to reveal the differential protein expression profiles of acute responses to copper sulfate exposure in larvae of Artemia sinica.Fourteen differentially displayed protein spots were detected and se...Proteomics was used to reveal the differential protein expression profiles of acute responses to copper sulfate exposure in larvae of Artemia sinica.Fourteen differentially displayed protein spots were detected and seven of them were identified.Three spots were up-expressed and identified:actin, heat shock protein 70,and chaperone subunit 1;three down-regulated proteins were identified:arginine kinase,elongation factor-2,and glycine-rich protein;and a newly expressed protein was identified as peroxiredoxin.The study indicates the involvement of all the differentially expressed proteins in the early responses of protein expression,and in the survival of A.sinica in the presence of copper and other heavy metals;the findings improve understanding of the organism’s adaptive responses and resistance.展开更多
The kinetics of forward extraction of boric acid from salt lake brine by 2-ethyl-1,3-hexanediol in toluene was investigated using the single drop technique. The factors affecting the extraction rate include interfacia...The kinetics of forward extraction of boric acid from salt lake brine by 2-ethyl-1,3-hexanediol in toluene was investigated using the single drop technique. The factors affecting the extraction rate include interfacial area between aqueous phase and organic phase, initial concentration of boric acid in aqueous phase, initial concentration of 2-ethyl-1,3-hexanediol in organic phase, and extraction temperature. The experimental results show that the extraction rate increases with the increase of the initial concentration of boric acid and2-ethyl-1,3-hexanediol, interfacial area of two phases, and temperature. With the temperature-dependence study, it is showed that the extraction is a diffusion-controlled process. The kinetic equation is presented for pH 1.0 in the aqueous phase and temperature of 318 K.展开更多
基金Project(20606008)supported by the National Natural Science Foundation of ChinaProject(11070210)supported by the Fundamental Research Funds for the Central Universities of China
文摘The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BAMBP). Rb+ and Cs+ were enriched and separated effectively by precipitating Mg2+ before extraction and by scrubbing out K+ and Na+ repeatedly before stripping. The effects of the volume ratio of organic phase to aqueous extraction phase(O/A), alkalinity of aqueous phase(c(OH)-), interference from K+ and Mg2+, and ratio the volume of organic phase to aqueous scrubbing phase(O/A′) were investigated. The experimental brine was extracted optimally by 5-stage extraction with 1.0 mol/L t-BAMBP in SK, c(OH-)=1 mol/L, and O/A=1:1. The scrubbing yield of rubidium was only about 10.5% when the extraction solvent was washed 3 times with 1×10-4 mol/L Na OH at O/A′=1:0.5. After 5-stage countercurrent extraction, the final extraction yields of Rb+ and Cs+ reached 95.04% and 99.80%, respectively.
基金Project(U1407137)supported by the National Natural Science Foundation of China
文摘Salt lake brine was reacted with activated aluminum-based alloys and lithium was precipitated.The effects of aluminum-based alloys on precipitating lithium were investigated and the reasonable alloy used to extract lithium from brine was obtained.The effects of the mole ratio of Al to Li and Ca content of Al-Ca alloy,the initial concentration of lithiumion ion in solution,reaction temperature and reaction time on the adsorption rate of lithium were studied,and the optimized process parameters were determined.The results show that the mole ratio of Al to Li and Ca content of Al-Ca alloy and reaction temperature have great influences on the precipitation rate of lithium.The precipitation rate of lithium reaches 94.6% under the optimal condition,indicating that Al-Ca alloy is suitable for the extraction of lithium from salt lake brine.
基金Supported by the Natural Science Foundation of China(No.20060109Z4016)the National Basic Research Development Program of China(No.2006CB101804)the Natural Science Foundation of Shandong Provincefor the excellent young researchers(No.2006BSA02004)
文摘Proteomics was used to reveal the differential protein expression profiles of acute responses to copper sulfate exposure in larvae of Artemia sinica.Fourteen differentially displayed protein spots were detected and seven of them were identified.Three spots were up-expressed and identified:actin, heat shock protein 70,and chaperone subunit 1;three down-regulated proteins were identified:arginine kinase,elongation factor-2,and glycine-rich protein;and a newly expressed protein was identified as peroxiredoxin.The study indicates the involvement of all the differentially expressed proteins in the early responses of protein expression,and in the survival of A.sinica in the presence of copper and other heavy metals;the findings improve understanding of the organism’s adaptive responses and resistance.
基金Supported by the Natural Science Foundation of the Education Department Hebei Province(2009426)Educational Commission of Hebei Province(ZH2011221)
文摘The kinetics of forward extraction of boric acid from salt lake brine by 2-ethyl-1,3-hexanediol in toluene was investigated using the single drop technique. The factors affecting the extraction rate include interfacial area between aqueous phase and organic phase, initial concentration of boric acid in aqueous phase, initial concentration of 2-ethyl-1,3-hexanediol in organic phase, and extraction temperature. The experimental results show that the extraction rate increases with the increase of the initial concentration of boric acid and2-ethyl-1,3-hexanediol, interfacial area of two phases, and temperature. With the temperature-dependence study, it is showed that the extraction is a diffusion-controlled process. The kinetic equation is presented for pH 1.0 in the aqueous phase and temperature of 318 K.