Besides Li+ and Mg2+, the electrochemical behavior of Na^+ and K+ in LiFePO4/FePO4 structures was studied since they naturally coexist with Li+ and Mg2+ in brine. The cyclic voltammogram (CV) results indicated...Besides Li+ and Mg2+, the electrochemical behavior of Na^+ and K+ in LiFePO4/FePO4 structures was studied since they naturally coexist with Li+ and Mg2+ in brine. The cyclic voltammogram (CV) results indicated that Na+ exhibits some reversibility in LiFePO4/FePO4 structures. Its reduction peak appears at -0.511 V, more negative than that of Li+ (-0.197 V), meaning that a relatively positive potential is beneficial for decreasing Na+ insertion. The reduction peak of K+ could not be found clearly, indicating that K+ is difficult to insert into the FePO4 structure. Furthermore, technical experiments using real brine with a super high Mg/Li ratio (493) at a cell voltage of 0.7V showed that the final extracted capacity of Li+, Mg2+ and Na+ that can be attained in 1 g LiFePO4 is 24.1 mg, 7.32 mg and 4.61 mg, respectively. The Mg/Li ratio can be reduced to 0.30 from 493, and the Na/Li ratio to 0.19 from 16.7, which proves that, even in super high Mg/Li ratio brine, if a cell voltage is appropriately controlled, it is possible to separate Li^+ and other impurities effectively.展开更多
A new method of preparing thin film metal-hydride electrodes for metal-hydride batteries is described. The method consists of simultaneous deposition of multi-component metallic species onto a substrate while bombardi...A new method of preparing thin film metal-hydride electrodes for metal-hydride batteries is described. The method consists of simultaneous deposition of multi-component metallic species onto a substrate while bombarding the growing, deposited thin film electrode with a low energy hydrogen ion beam An amorphous LaNi4 hydride thin film electrode has been prepared by this Hydrogen Ion Beam Assisted Deposition (HIBAD) technique. The electrochemical discharge capacity and cycle life of this electrode in a 6 M KOH solution surpass previously reported values for La-Ni thin film electrodes prepared by other deposition methods.展开更多
Organolead trihalide perovskite materials have been attracting increasing attention due to their promising role in solid solar cells. Several advantages make them potential candidates for optoelectronics:(1) solution-...Organolead trihalide perovskite materials have been attracting increasing attention due to their promising role in solid solar cells. Several advantages make them potential candidates for optoelectronics:(1) solution- or/and vapor-processed preparation at low temperature;(2) tunable optical bandgap, wide absorption spectrum but narrow photoluminescence peaks;(3) long car-rier life time, large diffusion length and high charge mobility;(4) various nanostructures via tuning capping agents and sol-vents. In this review, we summarize recent attempts toward efficient LEDs based on organolead trihalide perovskite materials. The strategies of materials science, device design and interface engineering are highlighted. Recent development and future perspectives are summarized for practical perovskite light technologies.展开更多
Organic photovoltaic(OPV)cells have found their potential applications in the harvest of indoor light photons.However,the output power of such indoor devices is usually far from the demand of the internet of things.Th...Organic photovoltaic(OPV)cells have found their potential applications in the harvest of indoor light photons.However,the output power of such indoor devices is usually far from the demand of the internet of things.Therefore,it is essential to boost the output power of indoor organic photovoltaics to a much higher level.As wildly deployed among industrial and civil luminous environments,thermal radiation-based indoor light sources are alternative candidates to supply the essential power of the off-grid electronics with a broad consecutive emission spectrum.In this work,we evaluated the photovoltaic performance of organic solar cells under indoor incandescent and halogen illuminations.Impressively,under such thermal radiations,an improvement over 500%of the output power density can be achieved in comparison with that under light-emitting diodes and fluorescent lamps,reaching a record high value of 279.1 lWcm^(-2) by the PM6:Y6-based device.The remarkable power output is originated from the extra near-infrared spectrum of indoor thermal lights,which restricts the effective area under 10 cm^(2) in achieving 1 mW output power.This work clarifies the feasibility of collecting photons radiated from indoor thermal light sources through OPV cells,and enlightens the further applications of indoor OPV cells under multiple illumination environments.展开更多
基金Project(K1205034-11) supported by Technology Program of Changsha,China
文摘Besides Li+ and Mg2+, the electrochemical behavior of Na^+ and K+ in LiFePO4/FePO4 structures was studied since they naturally coexist with Li+ and Mg2+ in brine. The cyclic voltammogram (CV) results indicated that Na+ exhibits some reversibility in LiFePO4/FePO4 structures. Its reduction peak appears at -0.511 V, more negative than that of Li+ (-0.197 V), meaning that a relatively positive potential is beneficial for decreasing Na+ insertion. The reduction peak of K+ could not be found clearly, indicating that K+ is difficult to insert into the FePO4 structure. Furthermore, technical experiments using real brine with a super high Mg/Li ratio (493) at a cell voltage of 0.7V showed that the final extracted capacity of Li+, Mg2+ and Na+ that can be attained in 1 g LiFePO4 is 24.1 mg, 7.32 mg and 4.61 mg, respectively. The Mg/Li ratio can be reduced to 0.30 from 493, and the Na/Li ratio to 0.19 from 16.7, which proves that, even in super high Mg/Li ratio brine, if a cell voltage is appropriately controlled, it is possible to separate Li^+ and other impurities effectively.
文摘A new method of preparing thin film metal-hydride electrodes for metal-hydride batteries is described. The method consists of simultaneous deposition of multi-component metallic species onto a substrate while bombarding the growing, deposited thin film electrode with a low energy hydrogen ion beam An amorphous LaNi4 hydride thin film electrode has been prepared by this Hydrogen Ion Beam Assisted Deposition (HIBAD) technique. The electrochemical discharge capacity and cycle life of this electrode in a 6 M KOH solution surpass previously reported values for La-Ni thin film electrodes prepared by other deposition methods.
基金supported by the National Basic Research Program of China (2011CB933300)the National Natural Science Foundation of China (91333107, 51573004)the fund from Shenzhen City (CXZZ20120618162051603)
文摘Organolead trihalide perovskite materials have been attracting increasing attention due to their promising role in solid solar cells. Several advantages make them potential candidates for optoelectronics:(1) solution- or/and vapor-processed preparation at low temperature;(2) tunable optical bandgap, wide absorption spectrum but narrow photoluminescence peaks;(3) long car-rier life time, large diffusion length and high charge mobility;(4) various nanostructures via tuning capping agents and sol-vents. In this review, we summarize recent attempts toward efficient LEDs based on organolead trihalide perovskite materials. The strategies of materials science, device design and interface engineering are highlighted. Recent development and future perspectives are summarized for practical perovskite light technologies.
基金This work was supported by the National Natural Science Foundation of China(52073162,and 11774204)the Major Program of Natural Science Foundation of Shandong Province(ZR2019ZD43)X.T.H also acknowledged support from the ARC Centre of Excellence in Exciton Science(CE170100026).H.Y.thanks the Qilu Young Scholar Program of Shandong University.
文摘Organic photovoltaic(OPV)cells have found their potential applications in the harvest of indoor light photons.However,the output power of such indoor devices is usually far from the demand of the internet of things.Therefore,it is essential to boost the output power of indoor organic photovoltaics to a much higher level.As wildly deployed among industrial and civil luminous environments,thermal radiation-based indoor light sources are alternative candidates to supply the essential power of the off-grid electronics with a broad consecutive emission spectrum.In this work,we evaluated the photovoltaic performance of organic solar cells under indoor incandescent and halogen illuminations.Impressively,under such thermal radiations,an improvement over 500%of the output power density can be achieved in comparison with that under light-emitting diodes and fluorescent lamps,reaching a record high value of 279.1 lWcm^(-2) by the PM6:Y6-based device.The remarkable power output is originated from the extra near-infrared spectrum of indoor thermal lights,which restricts the effective area under 10 cm^(2) in achieving 1 mW output power.This work clarifies the feasibility of collecting photons radiated from indoor thermal light sources through OPV cells,and enlightens the further applications of indoor OPV cells under multiple illumination environments.