For digital channelized frequency division multiple access based satellite communication(SATCOM) systems,it is a challenging but critical issue to improve the transponder power and spectrum efficiency simultaneously u...For digital channelized frequency division multiple access based satellite communication(SATCOM) systems,it is a challenging but critical issue to improve the transponder power and spectrum efficiency simultaneously under limited and non-linear high-power amplifier conditions.In this paper,different from the traditional link supportability designs aiming at minimizing the total transponder output power,a maximal sum Shannon capacity optimization objective is firstly raised subject to link supportability constraints.Furthermore,an efficient multilevel optimization(MO) algorithm is proposed to solve the considered optimization problem in the case of single link for each terminal.Moreover,in the case of multiple links for one terminal,an improved MO algorithm involving Golden section and discrete gradient searching procedures is proposed to optimize power allocation over all links.Finally,several numerical results are provided to demonstrate the effectiveness of our proposals.Comparison results show that,by the MO algorithm,not only all links' supportability can be guaranteed but also a larger sum capacity can be achieved with lower complexity.展开更多
To gain the tradeoff between lower sidelobe and higher power amplifiers efficiency,a transmitting beam shaping scheme with limited amplitude weight values for satellite active phased array antenna is presented. The sc...To gain the tradeoff between lower sidelobe and higher power amplifiers efficiency,a transmitting beam shaping scheme with limited amplitude weight values for satellite active phased array antenna is presented. The scheme is implemented by a dual coding genetic algorithm(GA). Phase and amplitude of array weight vectors for beam shaping are encoded by real coding and finite length binary coding,respectively,which,maintaining accuracy of results,reduces the amplitude dynamic range and improves the efficiency of power amplifiers. The presented algorithm,compared with complex-coded GA,increases the convergence rate due to the search space's decrease. In order to overcome the prematurity and obtain better global optimization or quasi-global optimization,a new dual coding GA based on "species diversity retention" strategy and adaptive crossover and mutation probability are presented.展开更多
基金supportedin part by Natural Science Foundation under grant No.91338108,91438206Co-innovation Laboratory of Aerospace Broadband Network Technology
文摘For digital channelized frequency division multiple access based satellite communication(SATCOM) systems,it is a challenging but critical issue to improve the transponder power and spectrum efficiency simultaneously under limited and non-linear high-power amplifier conditions.In this paper,different from the traditional link supportability designs aiming at minimizing the total transponder output power,a maximal sum Shannon capacity optimization objective is firstly raised subject to link supportability constraints.Furthermore,an efficient multilevel optimization(MO) algorithm is proposed to solve the considered optimization problem in the case of single link for each terminal.Moreover,in the case of multiple links for one terminal,an improved MO algorithm involving Golden section and discrete gradient searching procedures is proposed to optimize power allocation over all links.Finally,several numerical results are provided to demonstrate the effectiveness of our proposals.Comparison results show that,by the MO algorithm,not only all links' supportability can be guaranteed but also a larger sum capacity can be achieved with lower complexity.
基金The project supported by National Natural Science Foundation of China (No. 60572095)Research Foundation for Doctors of ZZULI
文摘To gain the tradeoff between lower sidelobe and higher power amplifiers efficiency,a transmitting beam shaping scheme with limited amplitude weight values for satellite active phased array antenna is presented. The scheme is implemented by a dual coding genetic algorithm(GA). Phase and amplitude of array weight vectors for beam shaping are encoded by real coding and finite length binary coding,respectively,which,maintaining accuracy of results,reduces the amplitude dynamic range and improves the efficiency of power amplifiers. The presented algorithm,compared with complex-coded GA,increases the convergence rate due to the search space's decrease. In order to overcome the prematurity and obtain better global optimization or quasi-global optimization,a new dual coding GA based on "species diversity retention" strategy and adaptive crossover and mutation probability are presented.