Cluster Synthetic Aperture Radar (SAR) system is composed of a group of spaceborne SAR systems. With its agility of combination, this system can work in several different modes. In this letter, the basic configuration...Cluster Synthetic Aperture Radar (SAR) system is composed of a group of spaceborne SAR systems. With its agility of combination, this system can work in several different modes. In this letter, the basic configuration and the working mode of the system are presented.The special performance of the system compared with the conventional SAR system is indicated.展开更多
For the Pearl River plume, the supercritical, distinct plume front appears in downwelling-favorable winds, which is easily observed due to the distinct boundary between the plume water and the ambient water. In this p...For the Pearl River plume, the supercritical, distinct plume front appears in downwelling-favorable winds, which is easily observed due to the distinct boundary between the plume water and the ambient water. In this paper, in situ and satellite observations of a plume front are utilized to explore the Pearl River plume front properties under the downwelling-favorable winds. Field observations clearly show frontal structure, especially the two-layer structure in the plume water and the downward-motion of water in the frontal region. The Advanced Synthetic Aperture Radar(ASAR) images are also analyzed to unveil the plume front: there is a white stripe on the west side out of the river mouth under downwelling-favorable winds, which is identified as a supercritical plume front, and the width of the plume front is about 250 m. The normalized velocity gradient shows the intense velocity convergence in the front region. Also, analyses of ASAR images imply that the river discharge plays an important role in controlling the location and shape of the front.展开更多
Forest-height inversion using airborne double-antenna synthetic aperture radar(SAR)systems has been widely researched,leading to increasing accuracy.Polarimetric SAR Interferometry(PolInSAR)data from spaceborne single...Forest-height inversion using airborne double-antenna synthetic aperture radar(SAR)systems has been widely researched,leading to increasing accuracy.Polarimetric SAR Interferometry(PolInSAR)data from spaceborne single-antenna SAR systems,which are influenced by temporal decorrelation,have difficulty inverting forest height.Given the temporal decorrelation effect,the classical random volume over ground(RVoG)model has been proven to invert forest height with significant errors,using repeat-pass PolInSAR data.In consideration of this problem,the temporal decorrelation RVoG(TD-RVoG;based on the RVoG)model was proposed.In this study,an improved TD-RVoG model is presented,with a new temporal decorrelation function.Compared with TD-RVoG,the new model has fewer unknown parameters and can be applied in a three-stage inversion procedure.Validity of the new model is demonstrated by Advanced Land Observing Satellite/Phased Array type L-band SAR(ALOS/PALSAR)data.Results show that the improved TD-RVoG has better accuracy,with inversion error less than 1.5m.展开更多
基金Supported by the university doctorate special research fund (No.20030614001)
文摘Cluster Synthetic Aperture Radar (SAR) system is composed of a group of spaceborne SAR systems. With its agility of combination, this system can work in several different modes. In this letter, the basic configuration and the working mode of the system are presented.The special performance of the system compared with the conventional SAR system is indicated.
基金supported by the National Natural Science Foundation of China(Grant Nos.41476002 and 41206164)the Natural Science Foundation of Shandong Province(Grant No.ZR2014DQ013)+1 种基金State Key Laboratory of Tropical Oceanography,South China Sea Institute of Oceanology,Chinese Academy of Sciences(Grant No.LTO1409)China Postdoctoral Science Foundation(Grant No.2014M560574)
文摘For the Pearl River plume, the supercritical, distinct plume front appears in downwelling-favorable winds, which is easily observed due to the distinct boundary between the plume water and the ambient water. In this paper, in situ and satellite observations of a plume front are utilized to explore the Pearl River plume front properties under the downwelling-favorable winds. Field observations clearly show frontal structure, especially the two-layer structure in the plume water and the downward-motion of water in the frontal region. The Advanced Synthetic Aperture Radar(ASAR) images are also analyzed to unveil the plume front: there is a white stripe on the west side out of the river mouth under downwelling-favorable winds, which is identified as a supercritical plume front, and the width of the plume front is about 250 m. The normalized velocity gradient shows the intense velocity convergence in the front region. Also, analyses of ASAR images imply that the river discharge plays an important role in controlling the location and shape of the front.
基金supported by the Chinese Ministry of Science and Technology(Grant Nos.2011AA120403,2010CB951403,and 2009CB723901)
文摘Forest-height inversion using airborne double-antenna synthetic aperture radar(SAR)systems has been widely researched,leading to increasing accuracy.Polarimetric SAR Interferometry(PolInSAR)data from spaceborne single-antenna SAR systems,which are influenced by temporal decorrelation,have difficulty inverting forest height.Given the temporal decorrelation effect,the classical random volume over ground(RVoG)model has been proven to invert forest height with significant errors,using repeat-pass PolInSAR data.In consideration of this problem,the temporal decorrelation RVoG(TD-RVoG;based on the RVoG)model was proposed.In this study,an improved TD-RVoG model is presented,with a new temporal decorrelation function.Compared with TD-RVoG,the new model has fewer unknown parameters and can be applied in a three-stage inversion procedure.Validity of the new model is demonstrated by Advanced Land Observing Satellite/Phased Array type L-band SAR(ALOS/PALSAR)data.Results show that the improved TD-RVoG has better accuracy,with inversion error less than 1.5m.