To obtain the GLONASS satellite position at an epoch other than reference time,the satellite’s equation of motion has to be integrated with broadcasting ephemerides.The iterative detecting and repairing method of cyc...To obtain the GLONASS satellite position at an epoch other than reference time,the satellite’s equation of motion has to be integrated with broadcasting ephemerides.The iterative detecting and repairing method of cycle slips based on triple difference residuals for combined GPS/GLONASS positioning and the iterative ambiguity resolution approach suitable for combined post processing positioning are discussed systematically.Experiments show that millimeter accuracy can be achieved in short baselines with a few hours’ dual frequency or even single frequency GPS/GLONASS carrier phase observations,and the precision of dual frequency observations is distinctly higher than that of single frequency observations.展开更多
In satellite mobile communication system, relative movement of the satellite and the terminal will cause a large Doppler offset. Timing advanced estimation with Zadoff-Chu sequence is sensitive to the frequency offset...In satellite mobile communication system, relative movement of the satellite and the terminal will cause a large Doppler offset. Timing advanced estimation with Zadoff-Chu sequence is sensitive to the frequency offset. When the frequency offset is larger than one times subcarrier spacing, the value of peak cannot be detected at the receiving end. To suppress the larger Doppler frequency shift, this paper proposes a novel timing advanced estimation scheme(TAE-MCD) for satellite communication system. In this algorithm, t r a n s m i t t e d s i g n a l i s d i v i d e d i n t o Z C sequence and its conjugate sequence. Using multiplication and DFT operation to find the estimated peak at the receiving end, and make subtraction with the obtained sequences at last. The scheme can not only inhibit the adverse effects of large Doppler frequency shift in timing estimation effectively, but also reduce the computational complexity at the receiving end and improve the work efficiency of the hardware. Simulations results show that TAEMCD outperform the existing timing advanced estimation methods, on the condition of no additional time and frequency resource are needed.展开更多
Monitoring forest disturbances is important for understanding changes in ecosystems. The 1986 Typhoon Vera was a serious disturbance that severely impacted the forest ecosystems of Changbai Mountain National Nature Re...Monitoring forest disturbances is important for understanding changes in ecosystems. The 1986 Typhoon Vera was a serious disturbance that severely impacted the forest ecosystems of Changbai Mountain National Nature Reserve. Although the typhoon disturbance occurred more than two decades ago, the effects of the typhoon still remain within the study area. Few studies have focused on mapping and assessing disturbances across broad spatial and temporal scales. For this study, we first generated a map of forest composition prior to the typhoon disturbance, which served as a baseline data for the extraction of disturbed area. Then, the Disturbance Index(DI) method was tested for mapping the extent and magnitude of disturbance in the study area by applying a Tasseled Cap transformation to the Landsat imagery. The Landsatbased DI method estimated that an area of 13,764.78 ha of forest was disturbed by the typhoon. Based on visual assessments, these results correspond closely with the reference map derived from ground surveys. These results also revealed the influence of local topographic features on the distribution of windthrow areas. Windthrow areas were more pronounced inareas with elevations ranging from 1,000 to 2,000 m, slopes of less than 10 degrees, and southwestern to northwestern aspects. In addition, the relatively long(25 years) post-typhoon recovery period assessed by this study provided a more comprehensive analysis of the dynamics of forest recovery processes over time. Windthrow areas did not recover immediately after the typhoon, likely due to forest management practices enacted at the time. So far, forest recovery has proceeded more rapidly at elevations below 1,400 m, particularly on western slopes within the study area. Finally, a time series of DI values within the study period suggests a secondary disturbance may have occurred between 2000 and 2001.展开更多
To analyze the detection probability of shipbome AIS (automatic identification system) signal from space, a mathematical model dependent upon three factors of message collision avoidance, power of signal received by...To analyze the detection probability of shipbome AIS (automatic identification system) signal from space, a mathematical model dependent upon three factors of message collision avoidance, power of signal received by satellite and interference ratio of signal received is presented in the paper. The altitude and footprint area of the AIS satellite are discussed to overcome the collision of messages transmitted in the different time slots fxom different SOTDMA (self organizing time division multiple access) cell areas, but arrive at the same time slot due to the different signal path lengths. The simulated result shows that compared to the normal LEO (low ear~ orbit) satellite system, on average the maximum signal coverage area and the maximum FOV (field of view) of the AIS satellite system are reduced by 74% and 38%. The majority of power of signal transmitted fi'om shipborne 12W-power AIS transmitters located within the maximum signal coverage area may be received with the sufficient margin of power of signal by the LEO satellite, but the space-based AIS system generally suffers from the insufficient CIR (carrier to co-channel interference ratio) of signal received since around 95% pairs of message simultaneously received by satellites may not be correctly decoded. The insufficient CIR of signal received is the bottleneck for the high message detection probability. Therefore, the measure of separating the collision messages should be further taken by the space-based AIS system to increase the detection probability.展开更多
There is an increasing trend to apply GNSS continuous observation of short baselines to the monitoring of engineering works, such as bridges and dams, for their structural analysis and safety control. In the case of l...There is an increasing trend to apply GNSS continuous observation of short baselines to the monitoring of engineering works, such as bridges and dams, for their structural analysis and safety control. In the case of large dams, one important application of the GNSS continuous observation is thc establishment of early warning systems that demand accurate, frequently updated information and where the analysis of the baseline time series, in order to separate signal from noise is mandatory. The paper presents a study on the performance of linear filters of the asymmetric moving average type to smooth baseline time series. The transfer function of the filter is adopted as a smoothing criterion to choose an adequate order for the moving average, in face of the spectral density function of the baseline time series. Onc series of measurements of a short test baseline (325 m), materialized in the campus of the National Laboratory for Civil Engineering, is used as an example of the proposed strategy.展开更多
Care should be taken to minimize adverse impact of receiver differential code biases(DCBs) on global navigation satellite system(GNSS)-derived ionospheric parameters. It is therefore of importance to ascertain the int...Care should be taken to minimize adverse impact of receiver differential code biases(DCBs) on global navigation satellite system(GNSS)-derived ionospheric parameters. It is therefore of importance to ascertain the intrinsic characteristics of receiver DCBs,preferably in the context of new-generation GNSS. In this contribution, we present a method that enables time-wise retrieval of between-receiver DCBs(BR-DCBs) from dualfrequency, code-only measurements collected by a pair of co-located receivers. This method is applicable to the US GPS as well as to a new set of GNSS constellations including the Chinese Bei Dou, the European Galileo and the Japanese QZSS. With the use of this method, we determine the multi-GNSS BR-DCB time-wise estimates covering a time period of up to 2 years(January 2013–March 2015) with a 30-s time resolution for five receiverpairs(four zero and one short baselines). For the BR-DCB time-wise estimates pertaining to an arbitrary receiver-pair and constellation, we demonstrate their promising intraday stability by means of statistical hypothesis testing. We also find that the Bei Dou BR-DCB daily weighted average(DWA) estimates show a dependence on satellite type, in particular for receiver-pairs of mixed types. Finally, we demonstrate that long-term variability in BR-DCB DWA estimates can be closely associated with hardware temperature variations inside the receivers.展开更多
A two-way satellite time and frequency transfer(TWSTFT) device equipped in the BeiDou navigation satellite system(BDS)can calculate clock error between satellite and ground master clock. TWSTFT is a real-time method w...A two-way satellite time and frequency transfer(TWSTFT) device equipped in the BeiDou navigation satellite system(BDS)can calculate clock error between satellite and ground master clock. TWSTFT is a real-time method with high accuracy because most system errors such as orbital error, station position error, and tropospheric and ionospheric delay error can be eliminated by calculating the two-way pseudorange difference. Another method, the multi-satellite precision orbit determination(MPOD)method, can be applied to estimate satellite clock errors. By comparison with MPOD clock estimations, this paper discusses the applications of the BDS TWSTFT clock observations in satellite clock measurement, satellite clock prediction, navigation system time monitor, and satellite clock performance assessment in orbit. The results show that with TWSTFT clock observations, the accuracy of satellite clock prediction is higher than MPOD. Five continuous weeks of comparisons with three international GNSS Service(IGS) analysis centers(ACs) show that the reference time difference between BeiDou time(BDT) and golbal positoning system(GPS) time(GPST) realized IGS ACs is in the tens of nanoseconds. Applying the TWSTFT clock error observations may obtain more accurate satellite clock performance evaluation in the 104 s interval because the accuracy of the MPOD clock estimation is not sufficiently high. By comparing the BDS and GPS satellite clock performance, we found that the BDS clock stability at the 103 s interval is approximately 10.12, which is similar to the GPS IIR.展开更多
The precision of VLBI tracking delays and the positioning reduction results during the real-time tracking phase of the Chang'E-2 satellite are statistically analyzed.The application of the positioning reduction to...The precision of VLBI tracking delays and the positioning reduction results during the real-time tracking phase of the Chang'E-2 satellite are statistically analyzed.The application of the positioning reduction to the real-time monitoring of pivotal arcs of the Chang'E-2 satellite is discussed.The technical specifications of the tests of tracking and control systems in X-band are estimated and evaluated via the positioning reduction method.Useful methodology and software are prepared and practical experience in engineering and technology is accumulated for the follow-up lunar and deep space explorations of China.展开更多
High frequency multi-GNSS zero-difference applications like Precise Orbit Determination (POD) for Low Earth Orbiters (LEO) and high frequency kinematic positioning require corresponding high-rate GNSS clock correc...High frequency multi-GNSS zero-difference applications like Precise Orbit Determination (POD) for Low Earth Orbiters (LEO) and high frequency kinematic positioning require corresponding high-rate GNSS clock corrections. The determination of the GNSS clocks in the orbit determination process is time consuming, especially in tile combined GPS/GLONASS pro- cessing. At present, a large number of IGS Analysis Centers (AC) provide clock corrections in 5-rain sampling and only a few ACs provide clocks in 30-s sampling for both GPS and GLONASS. In this paper, an efficient epoch-difference GNSS clock determination algorithm is adopted based on the algorithm used by the Center for Orbit Determination in Europe (CODE). The clock determination procedure of the GNSS Analysis Center at Shanghai Astronomical Observatory (SHAO) and the algorithm is described in detail. It is shown that the approach greatly speeds up the processing, and the densified 30-s clocks have the same quality as the 5-rain clocks estimated based on a zero-difference solution. Comparing the densified 30-s GNSS clocks provided by SHAO with that of IGS and its ACs, results show that our 30-s GNSS clocks are of the same quality as that of 1GS. Allan deviation also gives the same conclusion. Further validation of the SHAO 30-s clock product is performed in kine- matic PPP and LEO POD. Results indicate that the positions have the same accuracy when using SHAO 30-s GNSS clocks or IGS (and its AC) finals. The robustness of the algorithm and processing approach ensure its extension to provide clocks in 5-s or even higher frequencies. The implementation of the new approach is simple and it could be delivered as a black-box to the current scientific software packages.展开更多
Aiming at regional services,the space segment of COMPASS (Phase I) satellite navigation system is a constellation of Geostationary Earth Orbit (GEO),Inclined Geostationary Earth Orbit (IGSO) and Medium Earth Orbit (ME...Aiming at regional services,the space segment of COMPASS (Phase I) satellite navigation system is a constellation of Geostationary Earth Orbit (GEO),Inclined Geostationary Earth Orbit (IGSO) and Medium Earth Orbit (MEO) satellites.Precise orbit determination (POD) for the satellites is limited by the geographic distribution of regional tracking stations.Independent time synchronization (TS) system is developed to supplement the regional tracking network,and satellite clock errors and orbit data may be obtained by simultaneously processing both tracking data and TS data.Consequently,inconsistency between tracking system and TS system caused by remaining instrumental errors not calibrated may decrease navigation accuracy.On the other hand,POD for the mixed constellation of GEO/IGSO/MEO with the regional tracking network leads to parameter estimations that are highly correlated.Notorious example of correlation is found between GEO's orbital elements and its clock errors.We estimate orbital elements and clock errors for a 3GEO+2IGSO constellation in this study using a multi-satellite precise orbit determination (MPOD) strategy,with which clock error elimination algorithm is applied to separate orbital and clock estimates to improve numerical efficiency.Satellite Laser Ranging (SLR) data are used to evaluate User Ranging Error (URE),which is the orbital error projected on a receiver's line-of-sight direction.Two-way radio-wave time transfer measurements are used to evaluate clock errors.Experimenting with data from the regional tracking network,we conclude that the fitting of code data is better than 1 m in terms of Root-Mean-Square (RMS),and fitting of carrier phase is better than 1 cm.For orbital evaluation,difference between computed receiver-satellite ranging based on estimated orbits and SLR measurements is better than 1 m (RMS).For clock estimates evaluation,2-hour linear-fitting shows that the satellite clock rates are about 1.E-10 s/s,while receiver clock rates are about 1×10 13-1×10 12 s/s.For the 72-hour POD experiment,the average differences between POD satellite clock rates estimates and clock measurements based on TS system are about 1×10 13 s/s,and for receiver clock rates,the differences are about 1×10 15 s/s.展开更多
Time synchronization between ground and satellites is a key technology for satellite navigation system. With dual-channel satellite, a method called Two-Way Common-View(TWCV) satellite time transfer for Compass system...Time synchronization between ground and satellites is a key technology for satellite navigation system. With dual-channel satellite, a method called Two-Way Common-View(TWCV) satellite time transfer for Compass system is proposed, which combines both characteristics of satellite common-view and two-way satellite-ground time transfer. By satellite-ground two-way pseudo-range differencing and two stations common-view differencing, this TWCV method can completely eliminate the influence of common errors, such as satellite clock offset, ephemeris errors, troposphere delay and station coordinates errors. At the same time, ionosphere delay related to signal frequency is also weakened significantly. So the precision of time transfer is improved much more greatly than before. In this paper, the basic principle is introduced in detail, the effect of major errors is analyzed and the practical calculation model in the Earth-fixed coordinate system for this new method is provided. Finally, experiment analysis is conducted with actual Compass observing data. The results show that the deviation and the stability of the satellite dual channel can be better than 0.1 ns, and the accuracy of the two-way common-view satellite time transfer can achieve 0.4 ns. All these results have verified the correctness of this TWCV method and model. In addition, we compare this TWCV satellite time transfer with the independent C-band TWSTFT(Two-Way Satellite Time and Frequency Transfer). It shows that the result of the TWCV satellite time transfer is in accordance with the C-band TWSTFT result, which further suggests that the TWCV method is a remote high precision time transfer technique. The research results in this paper are very important references for the development and application of Compass satellite navigation system.展开更多
Hot Flow Anomalies (HFAs) are phenomena that frequently appear in the vicinity of the Earth's bow shock. We have identified 765 HFA events with Cluster spacecraft data from 2003 to 2009. We study the plasma and ma...Hot Flow Anomalies (HFAs) are phenomena that frequently appear in the vicinity of the Earth's bow shock. We have identified 765 HFA events with Cluster spacecraft data from 2003 to 2009. We study the plasma and magnetic field variations during typical HFAs. Then we study the average structure of HFAs using the superposed epoch method during a 200 s time interval, with the HFA onset time as the epoch time. The results show that HFAs can be classified into four classes based on variations of the dynamic pressure over time, namely "-+" (down-up), "+-" (up-down), "M" (up-down-up) and "W" (up-down-up-down-up), where the letters represent similar shapes with the variation trends of the dynamic pressure. Trends of other parameters are highly related to those of the dynamic pressure with obvious characteristics of the classification. Moreover, statistical results suggest that the number of HFA events varies in years. Compared with the speed of solar wind and sunspot number, the number of HFA events in each year has positive correlation with the former, while it has little relation with the latter. The result of this paper will provide data base for further studies on the mechanisms of the formation, the structural evolution and other relative questions of HFAs.展开更多
Orbit fitting is used in many GPS applications. For example, in Precise Point Positioning (PPP), GPS orbits (SP3 orbits) are normally retrieved either from IGS or from one of its Analysis Centers (ACs) with 15 minutes...Orbit fitting is used in many GPS applications. For example, in Precise Point Positioning (PPP), GPS orbits (SP3 orbits) are normally retrieved either from IGS or from one of its Analysis Centers (ACs) with 15 minutes’ sampling, which is much bigger than the normal observation sampling. Therefore, algorithms should be derived to fit GPS orbits to the observation time. Many methods based on interpolation were developed. Using these methods the orbits fit well at the sampling points. However, these methods ignore the physical motion model of GPS satellites. Therefore, the trajectories may not fit the true orbits at the periods in between 2 sampling epochs. To solve this problem, we develop a dynamic approach, in which a model based on Helmert transformation is developed in GPS orbit fitting. In this orbit fitting approach, GPS orbits at sampling points are treated as pseudo-observations. Thereafter, Helmert transformation is built up between the pseudo-observations and dynamically integrated orbits at each epoch. A set of Helmert parameters together with corrections of GPS initial orbits are then modeled as unknown parameters. Results show that the final fit orbits have the same precision as the IGS final orbits.展开更多
Satellite-station two-way time comparison is a typical design in Beidou System(BDS)which is significantly different from other satellite navigation systems.As a type of two-way time comparison method,BDS time synchron...Satellite-station two-way time comparison is a typical design in Beidou System(BDS)which is significantly different from other satellite navigation systems.As a type of two-way time comparison method,BDS time synchronization is hardly influenced by satellite orbit error,atmosphere delay,tracking station coordinate error and measurement model error.Meanwhile,single-way time comparison can be realized through the method of Multi-satellite Precision Orbit Determination(MPOD)with pseudo-range and carrier phase of monitor receiver.It is proved in the constellation of 3GEO/2IGSO that the radial orbit error can be reflected in the difference between two-way time comparison and single-way time comparison,and that may lead to a substitute for orbit evaluation by SLR.In this article,the relation between orbit error and difference of two-way and single-way time comparison is illustrated based on the whole constellation of BDS.Considering the all-weather and real-time operation mode of two-way time comparison,the orbit error could be quantifiably monitored in a real-time mode through comparing two-way and single-way time synchronization.In addition,the orbit error can be predicted and corrected in a short time based on its periodic characteristic.It is described in the experiments of GEO and IGSO that the prediction accuracy of space signal can be obviously improved when the prediction orbit error is sent to the users through navigation message,and then the UERE including terminal error can be reduced from 0.1 m to 0.4 m while the average accuracy can be improved more than 27%.Though it is still hard to make accuracy improvement for Precision Orbit Determination(POD)and orbit prediction because of the confined tracking net and the difficulties in dynamic model optimization,in this paper,a practical method for orbit accuracy improvement is proposed based on two-way time comparison which can result in the reflection of orbit error.展开更多
Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and co...Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and communications. Meanwhile, the time synchronization among base stations depends on the Network Time Protocol. With the development of mobile communication systems, the corresponding time synchronization accuracy has increased as well. In this case, the use of sparsely distributed-high-precision synchronization points to synchronize time for an entire network with high precision is a key problem and is the foundation of the enhanced network communication. The current receiver equipment for China's digital synchronous network typically includes dedicated multi-channel GPS receivers for communication; however, with the development of GPS by the USA, network security has been destabilized and reliability is low. Nonetheless, network time synchronization based on Beidou satellite navigation system timing devices is an inevitable development trend for China's digital communications network with the establishment of the independently developed BDS, especially the implementation and improvement of the Beidou foundation enhancement system.展开更多
X-ray pulsars offer stable, periodic X-ray pulse sequences that can be used in spacecraft positioning systems. A method using X-ray pulsars to determine the initial orbit of a satellite is presented in this paper. Thi...X-ray pulsars offer stable, periodic X-ray pulse sequences that can be used in spacecraft positioning systems. A method using X-ray pulsars to determine the initial orbit of a satellite is presented in this paper. This method suggests only one detector to be equipped on the satellite and assumes that the detector observes three pulsars in turn. To improve the performance, the use of incremental phase in one observation duration is proposed, and the incremental phase is combined with the time difference of arrival(TDOA). Then, a weighted least squares(WLS) algorithm is formulated to calculate the initial orbit. Numerical simulations are performed to assess the proposed orbit determination method.展开更多
文摘To obtain the GLONASS satellite position at an epoch other than reference time,the satellite’s equation of motion has to be integrated with broadcasting ephemerides.The iterative detecting and repairing method of cycle slips based on triple difference residuals for combined GPS/GLONASS positioning and the iterative ambiguity resolution approach suitable for combined post processing positioning are discussed systematically.Experiments show that millimeter accuracy can be achieved in short baselines with a few hours’ dual frequency or even single frequency GPS/GLONASS carrier phase observations,and the precision of dual frequency observations is distinctly higher than that of single frequency observations.
基金supported by the Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory (ITD-U13007/ KX132600014)the National Natural Science Foundation of China (No. 9143810063)the Fundamental Research Funds for the Central Universities (2014RC0202)
文摘In satellite mobile communication system, relative movement of the satellite and the terminal will cause a large Doppler offset. Timing advanced estimation with Zadoff-Chu sequence is sensitive to the frequency offset. When the frequency offset is larger than one times subcarrier spacing, the value of peak cannot be detected at the receiving end. To suppress the larger Doppler frequency shift, this paper proposes a novel timing advanced estimation scheme(TAE-MCD) for satellite communication system. In this algorithm, t r a n s m i t t e d s i g n a l i s d i v i d e d i n t o Z C sequence and its conjugate sequence. Using multiplication and DFT operation to find the estimated peak at the receiving end, and make subtraction with the obtained sequences at last. The scheme can not only inhibit the adverse effects of large Doppler frequency shift in timing estimation effectively, but also reduce the computational complexity at the receiving end and improve the work efficiency of the hardware. Simulations results show that TAEMCD outperform the existing timing advanced estimation methods, on the condition of no additional time and frequency resource are needed.
基金sponsored by the "State Key Laboratory of Resources and Environmental Information System" and the "Fundamental Research Funds for the Central Universities" (No. 11SSXT134)
文摘Monitoring forest disturbances is important for understanding changes in ecosystems. The 1986 Typhoon Vera was a serious disturbance that severely impacted the forest ecosystems of Changbai Mountain National Nature Reserve. Although the typhoon disturbance occurred more than two decades ago, the effects of the typhoon still remain within the study area. Few studies have focused on mapping and assessing disturbances across broad spatial and temporal scales. For this study, we first generated a map of forest composition prior to the typhoon disturbance, which served as a baseline data for the extraction of disturbed area. Then, the Disturbance Index(DI) method was tested for mapping the extent and magnitude of disturbance in the study area by applying a Tasseled Cap transformation to the Landsat imagery. The Landsatbased DI method estimated that an area of 13,764.78 ha of forest was disturbed by the typhoon. Based on visual assessments, these results correspond closely with the reference map derived from ground surveys. These results also revealed the influence of local topographic features on the distribution of windthrow areas. Windthrow areas were more pronounced inareas with elevations ranging from 1,000 to 2,000 m, slopes of less than 10 degrees, and southwestern to northwestern aspects. In addition, the relatively long(25 years) post-typhoon recovery period assessed by this study provided a more comprehensive analysis of the dynamics of forest recovery processes over time. Windthrow areas did not recover immediately after the typhoon, likely due to forest management practices enacted at the time. So far, forest recovery has proceeded more rapidly at elevations below 1,400 m, particularly on western slopes within the study area. Finally, a time series of DI values within the study period suggests a secondary disturbance may have occurred between 2000 and 2001.
文摘To analyze the detection probability of shipbome AIS (automatic identification system) signal from space, a mathematical model dependent upon three factors of message collision avoidance, power of signal received by satellite and interference ratio of signal received is presented in the paper. The altitude and footprint area of the AIS satellite are discussed to overcome the collision of messages transmitted in the different time slots fxom different SOTDMA (self organizing time division multiple access) cell areas, but arrive at the same time slot due to the different signal path lengths. The simulated result shows that compared to the normal LEO (low ear~ orbit) satellite system, on average the maximum signal coverage area and the maximum FOV (field of view) of the AIS satellite system are reduced by 74% and 38%. The majority of power of signal transmitted fi'om shipborne 12W-power AIS transmitters located within the maximum signal coverage area may be received with the sufficient margin of power of signal by the LEO satellite, but the space-based AIS system generally suffers from the insufficient CIR (carrier to co-channel interference ratio) of signal received since around 95% pairs of message simultaneously received by satellites may not be correctly decoded. The insufficient CIR of signal received is the bottleneck for the high message detection probability. Therefore, the measure of separating the collision messages should be further taken by the space-based AIS system to increase the detection probability.
文摘There is an increasing trend to apply GNSS continuous observation of short baselines to the monitoring of engineering works, such as bridges and dams, for their structural analysis and safety control. In the case of large dams, one important application of the GNSS continuous observation is thc establishment of early warning systems that demand accurate, frequently updated information and where the analysis of the baseline time series, in order to separate signal from noise is mandatory. The paper presents a study on the performance of linear filters of the asymmetric moving average type to smooth baseline time series. The transfer function of the filter is adopted as a smoothing criterion to choose an adequate order for the moving average, in face of the spectral density function of the baseline time series. Onc series of measurements of a short test baseline (325 m), materialized in the campus of the National Laboratory for Civil Engineering, is used as an example of the proposed strategy.
基金funded by the Chinese Academy of Sciences(CAS)and the Royal Netherlands Academy of Arts and Sciences(KNAW)joint research project‘‘Compass,Galileo and GPS for improved ionosphere modelling.’’The second author is the recipient of an Australian Research Council(ARC)Federation Fellowship(NO.FF0883188)
文摘Care should be taken to minimize adverse impact of receiver differential code biases(DCBs) on global navigation satellite system(GNSS)-derived ionospheric parameters. It is therefore of importance to ascertain the intrinsic characteristics of receiver DCBs,preferably in the context of new-generation GNSS. In this contribution, we present a method that enables time-wise retrieval of between-receiver DCBs(BR-DCBs) from dualfrequency, code-only measurements collected by a pair of co-located receivers. This method is applicable to the US GPS as well as to a new set of GNSS constellations including the Chinese Bei Dou, the European Galileo and the Japanese QZSS. With the use of this method, we determine the multi-GNSS BR-DCB time-wise estimates covering a time period of up to 2 years(January 2013–March 2015) with a 30-s time resolution for five receiverpairs(four zero and one short baselines). For the BR-DCB time-wise estimates pertaining to an arbitrary receiver-pair and constellation, we demonstrate their promising intraday stability by means of statistical hypothesis testing. We also find that the Bei Dou BR-DCB daily weighted average(DWA) estimates show a dependence on satellite type, in particular for receiver-pairs of mixed types. Finally, we demonstrate that long-term variability in BR-DCB DWA estimates can be closely associated with hardware temperature variations inside the receivers.
基金supported by the National Natural Sciences Foundation of China(Grant No.41574029)Youth Innovation Promotion Association CAS(Grant No.2016242)
文摘A two-way satellite time and frequency transfer(TWSTFT) device equipped in the BeiDou navigation satellite system(BDS)can calculate clock error between satellite and ground master clock. TWSTFT is a real-time method with high accuracy because most system errors such as orbital error, station position error, and tropospheric and ionospheric delay error can be eliminated by calculating the two-way pseudorange difference. Another method, the multi-satellite precision orbit determination(MPOD)method, can be applied to estimate satellite clock errors. By comparison with MPOD clock estimations, this paper discusses the applications of the BDS TWSTFT clock observations in satellite clock measurement, satellite clock prediction, navigation system time monitor, and satellite clock performance assessment in orbit. The results show that with TWSTFT clock observations, the accuracy of satellite clock prediction is higher than MPOD. Five continuous weeks of comparisons with three international GNSS Service(IGS) analysis centers(ACs) show that the reference time difference between BeiDou time(BDT) and golbal positoning system(GPS) time(GPST) realized IGS ACs is in the tens of nanoseconds. Applying the TWSTFT clock error observations may obtain more accurate satellite clock performance evaluation in the 104 s interval because the accuracy of the MPOD clock estimation is not sufficiently high. By comparing the BDS and GPS satellite clock performance, we found that the BDS clock stability at the 103 s interval is approximately 10.12, which is similar to the GPS IIR.
基金supported by the National Natural Science Foundation of China (Grant Nos.10973030 and 11178024)China’s Lunar Exploration Project (Chang’E-2 mission,Chang’E-3 mission)the Committee of Science and Technique of Shanghai (Grant No.06DZ22101)
文摘The precision of VLBI tracking delays and the positioning reduction results during the real-time tracking phase of the Chang'E-2 satellite are statistically analyzed.The application of the positioning reduction to the real-time monitoring of pivotal arcs of the Chang'E-2 satellite is discussed.The technical specifications of the tests of tracking and control systems in X-band are estimated and evaluated via the positioning reduction method.Useful methodology and software are prepared and practical experience in engineering and technology is accumulated for the follow-up lunar and deep space explorations of China.
基金supported by the Program of"One Hundred Talented People"of the Chinese Academy of Sciencesthe National Natural Science Foundation of China(Grant Nos.11273046,11173049 and 40974018)+1 种基金the National High Technology Research and Development Program of China(Grant No.2013AA122402)IGS community is acknowledged for providing Rinex data and orbit and clock products
文摘High frequency multi-GNSS zero-difference applications like Precise Orbit Determination (POD) for Low Earth Orbiters (LEO) and high frequency kinematic positioning require corresponding high-rate GNSS clock corrections. The determination of the GNSS clocks in the orbit determination process is time consuming, especially in tile combined GPS/GLONASS pro- cessing. At present, a large number of IGS Analysis Centers (AC) provide clock corrections in 5-rain sampling and only a few ACs provide clocks in 30-s sampling for both GPS and GLONASS. In this paper, an efficient epoch-difference GNSS clock determination algorithm is adopted based on the algorithm used by the Center for Orbit Determination in Europe (CODE). The clock determination procedure of the GNSS Analysis Center at Shanghai Astronomical Observatory (SHAO) and the algorithm is described in detail. It is shown that the approach greatly speeds up the processing, and the densified 30-s clocks have the same quality as the 5-rain clocks estimated based on a zero-difference solution. Comparing the densified 30-s GNSS clocks provided by SHAO with that of IGS and its ACs, results show that our 30-s GNSS clocks are of the same quality as that of 1GS. Allan deviation also gives the same conclusion. Further validation of the SHAO 30-s clock product is performed in kine- matic PPP and LEO POD. Results indicate that the positions have the same accuracy when using SHAO 30-s GNSS clocks or IGS (and its AC) finals. The robustness of the algorithm and processing approach ensure its extension to provide clocks in 5-s or even higher frequencies. The implementation of the new approach is simple and it could be delivered as a black-box to the current scientific software packages.
基金supported by the Shanghai Committee of Science and Technology,China (Grant No.11ZR1443500)the National Natural Science Foundation of China (Grant No.11033004)
文摘Aiming at regional services,the space segment of COMPASS (Phase I) satellite navigation system is a constellation of Geostationary Earth Orbit (GEO),Inclined Geostationary Earth Orbit (IGSO) and Medium Earth Orbit (MEO) satellites.Precise orbit determination (POD) for the satellites is limited by the geographic distribution of regional tracking stations.Independent time synchronization (TS) system is developed to supplement the regional tracking network,and satellite clock errors and orbit data may be obtained by simultaneously processing both tracking data and TS data.Consequently,inconsistency between tracking system and TS system caused by remaining instrumental errors not calibrated may decrease navigation accuracy.On the other hand,POD for the mixed constellation of GEO/IGSO/MEO with the regional tracking network leads to parameter estimations that are highly correlated.Notorious example of correlation is found between GEO's orbital elements and its clock errors.We estimate orbital elements and clock errors for a 3GEO+2IGSO constellation in this study using a multi-satellite precise orbit determination (MPOD) strategy,with which clock error elimination algorithm is applied to separate orbital and clock estimates to improve numerical efficiency.Satellite Laser Ranging (SLR) data are used to evaluate User Ranging Error (URE),which is the orbital error projected on a receiver's line-of-sight direction.Two-way radio-wave time transfer measurements are used to evaluate clock errors.Experimenting with data from the regional tracking network,we conclude that the fitting of code data is better than 1 m in terms of Root-Mean-Square (RMS),and fitting of carrier phase is better than 1 cm.For orbital evaluation,difference between computed receiver-satellite ranging based on estimated orbits and SLR measurements is better than 1 m (RMS).For clock estimates evaluation,2-hour linear-fitting shows that the satellite clock rates are about 1.E-10 s/s,while receiver clock rates are about 1×10 13-1×10 12 s/s.For the 72-hour POD experiment,the average differences between POD satellite clock rates estimates and clock measurements based on TS system are about 1×10 13 s/s,and for receiver clock rates,the differences are about 1×10 15 s/s.
基金supported by the National Natural Science Foundation of China(Grant No.41174027)the National High-tech Research and Development Program(863 Program)(Grant No.2013AA122402)
文摘Time synchronization between ground and satellites is a key technology for satellite navigation system. With dual-channel satellite, a method called Two-Way Common-View(TWCV) satellite time transfer for Compass system is proposed, which combines both characteristics of satellite common-view and two-way satellite-ground time transfer. By satellite-ground two-way pseudo-range differencing and two stations common-view differencing, this TWCV method can completely eliminate the influence of common errors, such as satellite clock offset, ephemeris errors, troposphere delay and station coordinates errors. At the same time, ionosphere delay related to signal frequency is also weakened significantly. So the precision of time transfer is improved much more greatly than before. In this paper, the basic principle is introduced in detail, the effect of major errors is analyzed and the practical calculation model in the Earth-fixed coordinate system for this new method is provided. Finally, experiment analysis is conducted with actual Compass observing data. The results show that the deviation and the stability of the satellite dual channel can be better than 0.1 ns, and the accuracy of the two-way common-view satellite time transfer can achieve 0.4 ns. All these results have verified the correctness of this TWCV method and model. In addition, we compare this TWCV satellite time transfer with the independent C-band TWSTFT(Two-Way Satellite Time and Frequency Transfer). It shows that the result of the TWCV satellite time transfer is in accordance with the C-band TWSTFT result, which further suggests that the TWCV method is a remote high precision time transfer technique. The research results in this paper are very important references for the development and application of Compass satellite navigation system.
文摘Hot Flow Anomalies (HFAs) are phenomena that frequently appear in the vicinity of the Earth's bow shock. We have identified 765 HFA events with Cluster spacecraft data from 2003 to 2009. We study the plasma and magnetic field variations during typical HFAs. Then we study the average structure of HFAs using the superposed epoch method during a 200 s time interval, with the HFA onset time as the epoch time. The results show that HFAs can be classified into four classes based on variations of the dynamic pressure over time, namely "-+" (down-up), "+-" (up-down), "M" (up-down-up) and "W" (up-down-up-down-up), where the letters represent similar shapes with the variation trends of the dynamic pressure. Trends of other parameters are highly related to those of the dynamic pressure with obvious characteristics of the classification. Moreover, statistical results suggest that the number of HFA events varies in years. Compared with the speed of solar wind and sunspot number, the number of HFA events in each year has positive correlation with the former, while it has little relation with the latter. The result of this paper will provide data base for further studies on the mechanisms of the formation, the structural evolution and other relative questions of HFAs.
文摘Orbit fitting is used in many GPS applications. For example, in Precise Point Positioning (PPP), GPS orbits (SP3 orbits) are normally retrieved either from IGS or from one of its Analysis Centers (ACs) with 15 minutes’ sampling, which is much bigger than the normal observation sampling. Therefore, algorithms should be derived to fit GPS orbits to the observation time. Many methods based on interpolation were developed. Using these methods the orbits fit well at the sampling points. However, these methods ignore the physical motion model of GPS satellites. Therefore, the trajectories may not fit the true orbits at the periods in between 2 sampling epochs. To solve this problem, we develop a dynamic approach, in which a model based on Helmert transformation is developed in GPS orbit fitting. In this orbit fitting approach, GPS orbits at sampling points are treated as pseudo-observations. Thereafter, Helmert transformation is built up between the pseudo-observations and dynamically integrated orbits at each epoch. A set of Helmert parameters together with corrections of GPS initial orbits are then modeled as unknown parameters. Results show that the final fit orbits have the same precision as the IGS final orbits.
基金supported by the National Natural Science Foundation of China(Grant No.11103064)the Basic Research Foundation Program of Education Ministry Key Laboratory for Earth Space Environment and Geodetic survey,China(Grant No.11-01-06)
文摘Satellite-station two-way time comparison is a typical design in Beidou System(BDS)which is significantly different from other satellite navigation systems.As a type of two-way time comparison method,BDS time synchronization is hardly influenced by satellite orbit error,atmosphere delay,tracking station coordinate error and measurement model error.Meanwhile,single-way time comparison can be realized through the method of Multi-satellite Precision Orbit Determination(MPOD)with pseudo-range and carrier phase of monitor receiver.It is proved in the constellation of 3GEO/2IGSO that the radial orbit error can be reflected in the difference between two-way time comparison and single-way time comparison,and that may lead to a substitute for orbit evaluation by SLR.In this article,the relation between orbit error and difference of two-way and single-way time comparison is illustrated based on the whole constellation of BDS.Considering the all-weather and real-time operation mode of two-way time comparison,the orbit error could be quantifiably monitored in a real-time mode through comparing two-way and single-way time synchronization.In addition,the orbit error can be predicted and corrected in a short time based on its periodic characteristic.It is described in the experiments of GEO and IGSO that the prediction accuracy of space signal can be obviously improved when the prediction orbit error is sent to the users through navigation message,and then the UERE including terminal error can be reduced from 0.1 m to 0.4 m while the average accuracy can be improved more than 27%.Though it is still hard to make accuracy improvement for Precision Orbit Determination(POD)and orbit prediction because of the confined tracking net and the difficulties in dynamic model optimization,in this paper,a practical method for orbit accuracy improvement is proposed based on two-way time comparison which can result in the reflection of orbit error.
文摘Communication networks rely on time synchronization information generated by base station equipment(either the Global Navigation Satellite System receiver or rubidium atomic clock) to enable wireless networking and communications. Meanwhile, the time synchronization among base stations depends on the Network Time Protocol. With the development of mobile communication systems, the corresponding time synchronization accuracy has increased as well. In this case, the use of sparsely distributed-high-precision synchronization points to synchronize time for an entire network with high precision is a key problem and is the foundation of the enhanced network communication. The current receiver equipment for China's digital synchronous network typically includes dedicated multi-channel GPS receivers for communication; however, with the development of GPS by the USA, network security has been destabilized and reliability is low. Nonetheless, network time synchronization based on Beidou satellite navigation system timing devices is an inevitable development trend for China's digital communications network with the establishment of the independently developed BDS, especially the implementation and improvement of the Beidou foundation enhancement system.
基金supported by the National Natural Science Foundation of China(No.61401340)the Natural Science Basic Research Plan in Shaanxi Province of China(No.2016JM6035)+1 种基金the Fundamental Research Funds for the Central Universities,China(No.JB161303)and the Areospace T.T.&C.Innovation Program(No.201515A)
文摘X-ray pulsars offer stable, periodic X-ray pulse sequences that can be used in spacecraft positioning systems. A method using X-ray pulsars to determine the initial orbit of a satellite is presented in this paper. This method suggests only one detector to be equipped on the satellite and assumes that the detector observes three pulsars in turn. To improve the performance, the use of incremental phase in one observation duration is proposed, and the incremental phase is combined with the time difference of arrival(TDOA). Then, a weighted least squares(WLS) algorithm is formulated to calculate the initial orbit. Numerical simulations are performed to assess the proposed orbit determination method.