In satellite mobile communication system, relative movement of the satellite and the terminal will cause a large Doppler offset. Timing advanced estimation with Zadoff-Chu sequence is sensitive to the frequency offset...In satellite mobile communication system, relative movement of the satellite and the terminal will cause a large Doppler offset. Timing advanced estimation with Zadoff-Chu sequence is sensitive to the frequency offset. When the frequency offset is larger than one times subcarrier spacing, the value of peak cannot be detected at the receiving end. To suppress the larger Doppler frequency shift, this paper proposes a novel timing advanced estimation scheme(TAE-MCD) for satellite communication system. In this algorithm, t r a n s m i t t e d s i g n a l i s d i v i d e d i n t o Z C sequence and its conjugate sequence. Using multiplication and DFT operation to find the estimated peak at the receiving end, and make subtraction with the obtained sequences at last. The scheme can not only inhibit the adverse effects of large Doppler frequency shift in timing estimation effectively, but also reduce the computational complexity at the receiving end and improve the work efficiency of the hardware. Simulations results show that TAEMCD outperform the existing timing advanced estimation methods, on the condition of no additional time and frequency resource are needed.展开更多
A two-way satellite time and frequency transfer(TWSTFT) device equipped in the BeiDou navigation satellite system(BDS)can calculate clock error between satellite and ground master clock. TWSTFT is a real-time method w...A two-way satellite time and frequency transfer(TWSTFT) device equipped in the BeiDou navigation satellite system(BDS)can calculate clock error between satellite and ground master clock. TWSTFT is a real-time method with high accuracy because most system errors such as orbital error, station position error, and tropospheric and ionospheric delay error can be eliminated by calculating the two-way pseudorange difference. Another method, the multi-satellite precision orbit determination(MPOD)method, can be applied to estimate satellite clock errors. By comparison with MPOD clock estimations, this paper discusses the applications of the BDS TWSTFT clock observations in satellite clock measurement, satellite clock prediction, navigation system time monitor, and satellite clock performance assessment in orbit. The results show that with TWSTFT clock observations, the accuracy of satellite clock prediction is higher than MPOD. Five continuous weeks of comparisons with three international GNSS Service(IGS) analysis centers(ACs) show that the reference time difference between BeiDou time(BDT) and golbal positoning system(GPS) time(GPST) realized IGS ACs is in the tens of nanoseconds. Applying the TWSTFT clock error observations may obtain more accurate satellite clock performance evaluation in the 104 s interval because the accuracy of the MPOD clock estimation is not sufficiently high. By comparing the BDS and GPS satellite clock performance, we found that the BDS clock stability at the 103 s interval is approximately 10.12, which is similar to the GPS IIR.展开更多
基金supported by the Science and Technology on Information Transmission and Dissemination in Communication Networks Laboratory (ITD-U13007/ KX132600014)the National Natural Science Foundation of China (No. 9143810063)the Fundamental Research Funds for the Central Universities (2014RC0202)
文摘In satellite mobile communication system, relative movement of the satellite and the terminal will cause a large Doppler offset. Timing advanced estimation with Zadoff-Chu sequence is sensitive to the frequency offset. When the frequency offset is larger than one times subcarrier spacing, the value of peak cannot be detected at the receiving end. To suppress the larger Doppler frequency shift, this paper proposes a novel timing advanced estimation scheme(TAE-MCD) for satellite communication system. In this algorithm, t r a n s m i t t e d s i g n a l i s d i v i d e d i n t o Z C sequence and its conjugate sequence. Using multiplication and DFT operation to find the estimated peak at the receiving end, and make subtraction with the obtained sequences at last. The scheme can not only inhibit the adverse effects of large Doppler frequency shift in timing estimation effectively, but also reduce the computational complexity at the receiving end and improve the work efficiency of the hardware. Simulations results show that TAEMCD outperform the existing timing advanced estimation methods, on the condition of no additional time and frequency resource are needed.
基金supported by the National Natural Sciences Foundation of China(Grant No.41574029)Youth Innovation Promotion Association CAS(Grant No.2016242)
文摘A two-way satellite time and frequency transfer(TWSTFT) device equipped in the BeiDou navigation satellite system(BDS)can calculate clock error between satellite and ground master clock. TWSTFT is a real-time method with high accuracy because most system errors such as orbital error, station position error, and tropospheric and ionospheric delay error can be eliminated by calculating the two-way pseudorange difference. Another method, the multi-satellite precision orbit determination(MPOD)method, can be applied to estimate satellite clock errors. By comparison with MPOD clock estimations, this paper discusses the applications of the BDS TWSTFT clock observations in satellite clock measurement, satellite clock prediction, navigation system time monitor, and satellite clock performance assessment in orbit. The results show that with TWSTFT clock observations, the accuracy of satellite clock prediction is higher than MPOD. Five continuous weeks of comparisons with three international GNSS Service(IGS) analysis centers(ACs) show that the reference time difference between BeiDou time(BDT) and golbal positoning system(GPS) time(GPST) realized IGS ACs is in the tens of nanoseconds. Applying the TWSTFT clock error observations may obtain more accurate satellite clock performance evaluation in the 104 s interval because the accuracy of the MPOD clock estimation is not sufficiently high. By comparing the BDS and GPS satellite clock performance, we found that the BDS clock stability at the 103 s interval is approximately 10.12, which is similar to the GPS IIR.