为提高卫星星座网络受到攻击后的抗毁性及工作能力,提出了一种模拟退火狼群算法。该算法利用主客观权重法结合综合逼近理想排序法(TOPSIS:Technique for Order Preference by Similarity to Ideal Solution)对网络中的节点进行重要度评...为提高卫星星座网络受到攻击后的抗毁性及工作能力,提出了一种模拟退火狼群算法。该算法利用主客观权重法结合综合逼近理想排序法(TOPSIS:Technique for Order Preference by Similarity to Ideal Solution)对网络中的节点进行重要度评估,并按照节点重要度排序依次攻击。以网络连通度与网络连通效率为优化目标,卫星星座网络通信限制为约束条件,采用运动算子的思想实现狼群自适应步长的游走、召唤和围攻。使用通过优化得出的加边方案对网络结构进行优化。实验表明,与其他优化算法相比,该算法具有优越性,解决了卫星星座网络在受到攻击后工作能力下降的问题,提高了其受到攻击后的抗毁性。展开更多
近年来,在低轨(LEO)卫星星座通信网络中采用网际协议(IP)路由算法的研究已经取得了一系列进展,文章论述了LEO星座通信网络的特点、拓扑结构和虚拟节点策略。在此基础上提出了基于泛洪路由的LEO星座动态源路由算法DSR-LSN(Dynamic Source...近年来,在低轨(LEO)卫星星座通信网络中采用网际协议(IP)路由算法的研究已经取得了一系列进展,文章论述了LEO星座通信网络的特点、拓扑结构和虚拟节点策略。在此基础上提出了基于泛洪路由的LEO星座动态源路由算法DSR-LSN(Dynamic Source Routing algorithm in LEO Satellite Networks),星座网络仿真表明,DSR-LSN算法具有网络路由状态稳定性好、时延小的优点。展开更多
Constellations design for regional terrestrial-satellite network can strengthen the coverage for incomplete terrestrial cellular network. In this paper, a regional satellite constellation design scheme with multiple f...Constellations design for regional terrestrial-satellite network can strengthen the coverage for incomplete terrestrial cellular network. In this paper, a regional satellite constellation design scheme with multiple feature points and multiple optimization indicators is proposed by comprehensively considering multi-objective optimization and genetic algorithm, and "the Belt and Road" model is presented in the way of dividing over 70 nations into three regular target areas. Following this, we formulate the optimization model and devise a multi-objective genetic algorithm suited for the regional area with the coverage rate under simulating, computing and determining. Meanwhile, the total number of satellites in the constellation is reduced by calculating the ratio of actual coverage of a single-orbit constellation and the area of targets. Moreover, the constellations' performances of the proposed scheme are investigated with the connection of C++ and Satellite Tool Kit(STK). Simulation results show that the designed satellite constellations can achieve a good coverage of the target areas.展开更多
Low earth orbit(LEO)mega-constellations can provide global low-latency high bandwidth coverage compared to the terrestrial network.The time-varying topology of satellite networks and the uneven traffic distribution le...Low earth orbit(LEO)mega-constellations can provide global low-latency high bandwidth coverage compared to the terrestrial network.The time-varying topology of satellite networks and the uneven traffic distribution lead to the mismatch between satellites and users,resulting in the waste of satellite resources and the degradation of user performance.Through negotiation with neighbors,the traditional terrestrial cell breathing continuously converges to the optimal cell size in the face of user tides,but this method is difficult to converge timely when facing rapid and extreme flow changes caused by the rapid movement of satellites.This paper presents a fast adaptive cell breathing scheme(Fa B)through sub-block division and satellite cell initialization and adjustment.Fa B divides the ground into sub-blocks according to the user density.When the satellite moves in the same sub-block,the step size of breathing is adjusted according to the cell size difference between the previous satellite and the current satellite.When the satellite switches between different sub-blocks,the initial value of the cell is determined according to the density of the new sub-block.In addition to negotiating with neighboring satellites,this scheme also introduces location information to directly adjust the parameters of cell breathing and decrease the time of cell breathing convergence.From the real constellation data-driven simulation,we conclude that Fa B can quickly adjust the size of the cell with the location changing,and the utilization rate is increased by 2.66 times compared to the method with no cell breathing,and by2.37 times compared to the method with cell breathing without location information.展开更多
文摘为提高卫星星座网络受到攻击后的抗毁性及工作能力,提出了一种模拟退火狼群算法。该算法利用主客观权重法结合综合逼近理想排序法(TOPSIS:Technique for Order Preference by Similarity to Ideal Solution)对网络中的节点进行重要度评估,并按照节点重要度排序依次攻击。以网络连通度与网络连通效率为优化目标,卫星星座网络通信限制为约束条件,采用运动算子的思想实现狼群自适应步长的游走、召唤和围攻。使用通过优化得出的加边方案对网络结构进行优化。实验表明,与其他优化算法相比,该算法具有优越性,解决了卫星星座网络在受到攻击后工作能力下降的问题,提高了其受到攻击后的抗毁性。
文摘近年来,在低轨(LEO)卫星星座通信网络中采用网际协议(IP)路由算法的研究已经取得了一系列进展,文章论述了LEO星座通信网络的特点、拓扑结构和虚拟节点策略。在此基础上提出了基于泛洪路由的LEO星座动态源路由算法DSR-LSN(Dynamic Source Routing algorithm in LEO Satellite Networks),星座网络仿真表明,DSR-LSN算法具有网络路由状态稳定性好、时延小的优点。
基金jointly supported by the National Natural Science Foundation in China (No.61601075)the Natural Science Foundation Project of CQ CSTC (No.cstc2016jcyj A0174)
文摘Constellations design for regional terrestrial-satellite network can strengthen the coverage for incomplete terrestrial cellular network. In this paper, a regional satellite constellation design scheme with multiple feature points and multiple optimization indicators is proposed by comprehensively considering multi-objective optimization and genetic algorithm, and "the Belt and Road" model is presented in the way of dividing over 70 nations into three regular target areas. Following this, we formulate the optimization model and devise a multi-objective genetic algorithm suited for the regional area with the coverage rate under simulating, computing and determining. Meanwhile, the total number of satellites in the constellation is reduced by calculating the ratio of actual coverage of a single-orbit constellation and the area of targets. Moreover, the constellations' performances of the proposed scheme are investigated with the connection of C++ and Satellite Tool Kit(STK). Simulation results show that the designed satellite constellations can achieve a good coverage of the target areas.
基金the National Key Research and Development Plan of China(No.2018YFB1800301)the National Natural Science Foundation of China(No.62132009)+1 种基金the Youth Fund of National Natural Science Foundation of China(No.61902214)the Tsinghua University-China Mobile Communications Group Co.,Ltd.Joint Institute。
文摘Low earth orbit(LEO)mega-constellations can provide global low-latency high bandwidth coverage compared to the terrestrial network.The time-varying topology of satellite networks and the uneven traffic distribution lead to the mismatch between satellites and users,resulting in the waste of satellite resources and the degradation of user performance.Through negotiation with neighbors,the traditional terrestrial cell breathing continuously converges to the optimal cell size in the face of user tides,but this method is difficult to converge timely when facing rapid and extreme flow changes caused by the rapid movement of satellites.This paper presents a fast adaptive cell breathing scheme(Fa B)through sub-block division and satellite cell initialization and adjustment.Fa B divides the ground into sub-blocks according to the user density.When the satellite moves in the same sub-block,the step size of breathing is adjusted according to the cell size difference between the previous satellite and the current satellite.When the satellite switches between different sub-blocks,the initial value of the cell is determined according to the density of the new sub-block.In addition to negotiating with neighboring satellites,this scheme also introduces location information to directly adjust the parameters of cell breathing and decrease the time of cell breathing convergence.From the real constellation data-driven simulation,we conclude that Fa B can quickly adjust the size of the cell with the location changing,and the utilization rate is increased by 2.66 times compared to the method with no cell breathing,and by2.37 times compared to the method with cell breathing without location information.